6 resultados para Discrete reflection
em AMS Tesi di Dottorato - Alm@DL - Università di Bologna
Resumo:
FIR spectroscopy is an alternative way of collecting spectra of many inorganic pigments and corrosion products found on art objects, which is not normally observed in the MIR region. Most FIR spectra are traditionally collected in transmission mode but as a real novelty it is now also possible to record FIR spectra in ATR (Attenuated Total Reflectance) mode. In FIR transmission we employ polyethylene (PE) for preparation of pellets by embedding the sample in PE. Unfortunately, the preparation requires heating of the PE in order to produces at transparent pellet. This will affect compounds with low melting points, especially those with structurally incorporated water. Another option in FIR transmission is the use of thin films. We test the use of polyethylene thin film (PETF), both commercial and laboratory-made PETF. ATR collection of samples is possible in both the MIR and FIR region on solid, powdery or liquid samples. Changing from the MIR to the FIR region is easy as it simply requires the change of detector and beamsplitter (which can be performed within a few minutes). No preparation of the sample is necessary, which is a huge advantage over the PE transmission method. The most obvious difference, when comparing transmission with ATR, is the distortion of band shape (which appears asymmetrical in the lower wavenumber region) and intensity differences. However, the biggest difference can be the shift of strong absorbing bands moving to lower wavenumbers in ATR mode. The sometimes huge band shift necessitates the collection of standard library spectra in both FIR transmission and ATR modes, provided these two methods of collecting are to be employed for analyses of unknown samples. Standard samples of 150 pigment and corrosion compounds are thus collected in both FIR transmission and ATR mode in order to build up a digital library of spectra for comparison with unknown samples. XRD, XRF and Raman spectroscopy assists us in confirming the purity or impurity of our standard samples. 24 didactic test tables, with known pigment and binder painted on the surface of a limestone tablet, are used for testing the established library and different ways of collecting in ATR and transmission mode. In ATR, micro samples are scratched from the surface and examined in both the MIR and FIR region. Additionally, direct surface contact of the didactic tablets with the ATR crystal are tested together with water enhanced surface contact. In FIR transmission we compare the powder from our test tablet on the laboratory PETF and embedded in PE. We also compare the PE pellets collected using a 4x beam condenser, focusing the IR beam area from 8 mm to 2 mm. A few samples collected from a mural painting in a Nepalese temple, corrosion products collected from archaeological Chinese bronze objects and samples from a mural paintings in an Italian abbey, are examined by ATR or transmission spectroscopy.
Resumo:
Persistent Topology is an innovative way of matching topology and geometry, and it proves to be an effective mathematical tool in shape analysis. In order to express its full potential for applications, it has to interface with the typical environment of Computer Science: It must be possible to deal with a finite sampling of the object of interest, and with combinatorial representations of it. Following that idea, the main result claims that it is possible to construct a relation between the persistent Betti numbers (PBNs; also called rank invariant) of a compact, Riemannian submanifold X of R^m and the ones of an approximation U of X itself, where U is generated by a ball covering centered in the points of the sampling. Moreover we can state a further result in which, this time, we relate X with a finite simplicial complex S generated, thanks to a particular construction, by the sampling points. To be more precise, strict inequalities hold only in "blind strips'', i.e narrow areas around the discontinuity sets of the PBNs of U (or S). Out of the blind strips, the values of the PBNs of the original object, of the ball covering of it, and of the simplicial complex coincide, respectively.
Resumo:
In 'Involutory reflection groups and their models' (F. Caselli, 2010), a uniform Gelfand model is constructed for all complex reflection groups G(r,p,n) satisfying GCD(p,n)=1,2 and for all their quotients modulo a scalar subgroup. The present work provides a refinement for this model. The final decomposition obtained is compatible with the Robinson-Schensted generalized correspondence.
Resumo:
The surface electrocardiogram (ECG) is an established diagnostic tool for the detection of abnormalities in the electrical activity of the heart. The interest of the ECG, however, extends beyond the diagnostic purpose. In recent years, studies in cognitive psychophysiology have related heart rate variability (HRV) to memory performance and mental workload. The aim of this thesis was to analyze the variability of surface ECG derived rhythms, at two different time scales: the discrete-event time scale, typical of beat-related features (Objective I), and the “continuous” time scale of separated sources in the ECG (Objective II), in selected scenarios relevant to psychophysiological and clinical research, respectively. Objective I) Joint time-frequency and non-linear analysis of HRV was carried out, with the goal of assessing psychophysiological workload (PPW) in response to working memory engaging tasks. Results from fourteen healthy young subjects suggest the potential use of the proposed indices in discriminating PPW levels in response to varying memory-search task difficulty. Objective II) A novel source-cancellation method based on morphology clustering was proposed for the estimation of the atrial wavefront in atrial fibrillation (AF) from body surface potential maps. Strong direct correlation between spectral concentration (SC) of atrial wavefront and temporal variability of the spectral distribution was shown in persistent AF patients, suggesting that with higher SC, shorter observation time is required to collect spectral distribution, from which the fibrillatory rate is estimated. This could be time and cost effective in clinical decision-making. The results held for reduced leads sets, suggesting that a simplified setup could also be considered, further reducing the costs. In designing the methods of this thesis, an online signal processing approach was kept, with the goal of contributing to real-world applicability. An algorithm for automatic assessment of ambulatory ECG quality, and an automatic ECG delineation algorithm were designed and validated.
Resumo:
The main goal of this thesis is to facilitate the process of industrial automated systems development applying formal methods to ensure the reliability of systems. A new formulation of distributed diagnosability problem in terms of Discrete Event Systems theory and automata framework is presented, which is then used to enforce the desired property of the system, rather then just verifying it. This approach tackles the state explosion problem with modeling patterns and new algorithms, aimed for verification of diagnosability property in the context of the distributed diagnosability problem. The concepts are validated with a newly developed software tool.
Resumo:
Until few years ago, 3D modelling was a topic confined into a professional environment. Nowadays technological innovations, the 3D printer among all, have attracted novice users to this application field. This sudden breakthrough was not supported by adequate software solutions. The 3D editing tools currently available do not assist the non-expert user during the various stages of generation, interaction and manipulation of 3D virtual models. This is mainly due to the current paradigm that is largely supported by two-dimensional input/output devices and strongly affected by obvious geometrical constraints. We have identified three main phases that characterize the creation and management of 3D virtual models. We investigated these directions evaluating and simplifying the classic editing techniques in order to propose more natural and intuitive tools in a pure 3D modelling environment. In particular, we focused on freehand sketch-based modelling to create 3D virtual models, interaction and navigation in a 3D modelling environment and advanced editing tools for free-form deformation and objects composition. To pursuing these goals we wondered how new gesture-based interaction technologies can be successfully employed in a 3D modelling environments, how we could improve the depth perception and the interaction in 3D environments and which operations could be developed to simplify the classical virtual models editing paradigm. Our main aims were to propose a set of solutions with which a common user can realize an idea in a 3D virtual model, drawing in the air just as he would on paper. Moreover, we tried to use gestures and mid-air movements to explore and interact in 3D virtual environment, and we studied simple and effective 3D form transformations. The work was carried out adopting the discrete representation of the models, thanks to its intuitiveness, but especially because it is full of open challenges.