12 resultados para Discrete Choice Model
em AMS Tesi di Dottorato - Alm@DL - Università di Bologna
Resumo:
The aim of this work is to put forward a statistical mechanics theory of social interaction, generalizing econometric discrete choice models. After showing the formal equivalence linking econometric multinomial logit models to equilibrium statical mechanics, a multi- population generalization of the Curie-Weiss model for ferromagnets is considered as a starting point in developing a model capable of describing sudden shifts in aggregate human behaviour. Existence of the thermodynamic limit for the model is shown by an asymptotic sub-additivity method and factorization of correlation functions is proved almost everywhere. The exact solution for the model is provided in the thermodynamical limit by nding converging upper and lower bounds for the system's pressure, and the solution is used to prove an analytic result regarding the number of possible equilibrium states of a two-population system. The work stresses the importance of linking regimes predicted by the model to real phenomena, and to this end it proposes two possible procedures to estimate the model's parameters starting from micro-level data. These are applied to three case studies based on census type data: though these studies are found to be ultimately inconclusive on an empirical level, considerations are drawn that encourage further refinements of the chosen modelling approach, to be considered in future work.
Resumo:
Il pomodoro è una delle colture principali del panorama agro-alimentare italiano e rappresenta un ingrediente base della tradizione culinaria nazionale. Il pomodoro lavorato dall’industria conserviera può essere trasformato in diverse tipologie merceologiche, che si differenziano in base alla tecniche di lavorazione impiegate ed alle caratteristiche del prodotto finito. la percentuale di spesa totale destinata all’acquisto di cibo fuori casa è in aumento a livello globale e l’interesse dell’industria alimentare nei confronti di questo canale di vendita è quindi crescente. Mentre sono numerose le indagine in letteratura che studiano i processi di acquisto dei consumatori finali, non ci sono evidenze di studi simili condotti sugli operatori del Food Service. Obiettivo principale della ricerca è quello di valutare le preferenze dei responsabili acquisti del settore Food Service per diverse tipologie di pomodoro trasformato, in relazione ad una gamma di attributi rilevanti del prodotto e di caratteristiche del cliente. La raccolta dei dati è avvenuta attraverso un esperimento di scelta ipotetico realizzato in Italia e alcuni mercati esteri. Dai risultati ottenuti dall’indagine emerge che i Pelati sono la categoria di pomodoro trasformato preferita dai responsabili degli acquisti del settore Food Service intervistati, con il 35% delle preferenze dichiarate nell'insieme dei contesti di scelta proposti, seguita dalla Polpa (25%), dalla Passata (20%) e dal Concentrato (15%). Dai risultati ottenuti dalla stima del modello econometrico Logit a parametri randomizzati è emerso che alcuni attributi qualitativi di fiducia (credence), spesso impiegati nelle strategie di differenziazione e posizionamento da parte dell’industria alimentare nel mercato Retail, possono rivestire un ruolo importante anche nell’influenzare le preferenze degli operatori del Food Service. Questo potrebbe quindi essere un interessante filone di ricerca da sviluppare nel futuro, possibilmente con l'impiego congiunto di metodologie di analisi basate su esperimenti di scelta ipotetici e non ipotetici.
Resumo:
Concerns of Thai consumers on food safety have been recently increasing, especially in urban areas and for fresh produce because food safety scandals, such as chemical residues on fresh produce (e.g., cabbage) still frequently occur. The Thai government tried to meet consumer needs by imposing in the domestic market a stronger regulation aimed at increasing the baseline level of food safety assurance and by introducing a voluntary standard (based on Good Agricultural Practices or GAPs and known as Q-GAP) and the related food safety label (i.e., Q mark). However, since standards and regulations are weakly implemented in the domestic market compared to exported products, there is still a lack of Thai consumers’ confidence in the safety of local food products. In this work the current situation of GAPs adoption in Thai fresh produce production is analysed. Furthermore, it is studied whether Thai consumers place value on food safety labels available on the market, to know whether consumer demand could drive the market of certified safer products. This study contains three essays: 1) a review of the literature, 2) a qualitative study on stakeholders' perception toward GAPs adoption and 3) a quantitative study, aimed at analysing consumers' preferences and willingness-to-pay for food safety labels on fresh produce using a discrete choice experiment. This dissertation contributes to the economics of quality assurance and labelling, specifically addressing GAPs and food safety label in the fresh produce supply chain. Results show that Q-GAP could be effectively used to improve food safety in Thai domestic market, but its credibility should be improved. Stakeholder’s awareness toward food safety issues and the delivery of reliable and sound information are crucial. Thai consumers are willing to pay a premium price for food safety labelled produce over unlabelled ones. Implications for both government and business decision-makers are discussed.
Resumo:
The first paper sheds light on the informational content of high frequency data and daily data. I assess the economic value of the two family models comparing their performance in forecasting asset volatility through the Value at Risk metric. In running the comparison this paper introduces two key assumptions: jumps in prices and leverage effect in volatility dynamics. Findings suggest that high frequency data models do not exhibit a superior performance over daily data models. In the second paper, building on Majewski et al. (2015), I propose an affine-discrete time model, labeled VARG-J, which is characterized by a multifactor volatility specification. In the VARG-J model volatility experiences periods of extreme movements through a jump factor modeled as an Autoregressive Gamma Zero process. The estimation under historical measure is done by quasi-maximum likelihood and the Extended Kalman Filter. This strategy allows to filter out both volatility factors introducing a measurement equation that relates the Realized Volatility to latent volatility. The risk premia parameters are calibrated using call options written on S&P500 Index. The results clearly illustrate the important contribution of the jump factor in the pricing performance of options and the economic significance of the volatility jump risk premia. In the third paper, I analyze whether there is empirical evidence of contagion at the bank level, measuring the direction and the size of contagion transmission between European markets. In order to understand and quantify the contagion transmission on banking market, I estimate the econometric model by Aït-Sahalia et al. (2015) in which contagion is defined as the within and between countries transmission of shocks and asset returns are directly modeled as a Hawkes jump diffusion process. The empirical analysis indicates that there is a clear evidence of contagion from Greece to European countries as well as self-contagion in all countries.
Resumo:
Considering different perspectives, the scope of this thesis is to investigate how to improve healthcare resources allocation and the provision efficiency for hip surgeries, a resource-intensive operation, among the most frequently performed on the elderly, with a trend in volume that is increasing in years due to population aging. Firstly, the effect of Time-To-Surgery (TTS) on mortality for hip fracture patients is investigated. The analysis attempts to account for TTS endogeneity due to the inability to fully control for variables affecting patient delay – e.g. patient severity. Exploiting an instrumental variable model, where being admitted on Friday or Saturday predicts longer TTS, findings show exogenous TTS does not have a significant effect on mortality. Thus suggesting surgeons prioritize patients effectively, neutralizing the adverse impact of longer TTS. Then, the volume-outcome relation for total hip replacement surgery is analyzed, seeking to account for selective referral, which may be present in elective surgery context, and induce reverse causality issue in the volume-outcome relation. The analysis employs a conditional choice model where patient travel distance from all regions' hospitals is used as a hospital choice predictor. Findings show the exogenous hospital volume significantly decreases adverse outcomes probability, especially in the short run. Finally, the change in public procurement design enforced in the Romagna LHA (Italy) is exploited to assess its impact on hip prostheses cost, surgeons' implant choice, and patient health outcomes. Hip prostheses are the major cost-driver of hip replacement surgeries, hence it is crucial to design the public tender such that implant prices are minimized, but cost-containment policies have to be weighted with patient well-being. Evidence shows that a cost reduction occurred without a significant surgeons’ choices impact. Positive or no effect of surgeons specialization is found on patients outcomes after the new procurement introduction.
Resumo:
Until few years ago, 3D modelling was a topic confined into a professional environment. Nowadays technological innovations, the 3D printer among all, have attracted novice users to this application field. This sudden breakthrough was not supported by adequate software solutions. The 3D editing tools currently available do not assist the non-expert user during the various stages of generation, interaction and manipulation of 3D virtual models. This is mainly due to the current paradigm that is largely supported by two-dimensional input/output devices and strongly affected by obvious geometrical constraints. We have identified three main phases that characterize the creation and management of 3D virtual models. We investigated these directions evaluating and simplifying the classic editing techniques in order to propose more natural and intuitive tools in a pure 3D modelling environment. In particular, we focused on freehand sketch-based modelling to create 3D virtual models, interaction and navigation in a 3D modelling environment and advanced editing tools for free-form deformation and objects composition. To pursuing these goals we wondered how new gesture-based interaction technologies can be successfully employed in a 3D modelling environments, how we could improve the depth perception and the interaction in 3D environments and which operations could be developed to simplify the classical virtual models editing paradigm. Our main aims were to propose a set of solutions with which a common user can realize an idea in a 3D virtual model, drawing in the air just as he would on paper. Moreover, we tried to use gestures and mid-air movements to explore and interact in 3D virtual environment, and we studied simple and effective 3D form transformations. The work was carried out adopting the discrete representation of the models, thanks to its intuitiveness, but especially because it is full of open challenges.
Resumo:
The aim of the thesi is to formulate a suitable Item Response Theory (IRT) based model to measure HRQoL (as latent variable) using a mixed responses questionnaire and relaxing the hypothesis of normal distributed latent variable. The new model is a combination of two models already presented in literature, that is, a latent trait model for mixed responses and an IRT model for Skew Normal latent variable. It is developed in a Bayesian framework, a Markov chain Monte Carlo procedure is used to generate samples of the posterior distribution of the parameters of interest. The proposed model is test on a questionnaire composed by 5 discrete items and one continuous to measure HRQoL in children, the EQ-5D-Y questionnaire. A large sample of children collected in the schools was used. In comparison with a model for only discrete responses and a model for mixed responses and normal latent variable, the new model has better performances, in term of deviance information criterion (DIC), chain convergences times and precision of the estimates.
Resumo:
Among the experimental methods commonly used to define the behaviour of a full scale system, dynamic tests are the most complete and efficient procedures. A dynamic test is an experimental process, which would define a set of characteristic parameters of the dynamic behaviour of the system, such as natural frequencies of the structure, mode shapes and the corresponding modal damping values associated. An assessment of these modal characteristics can be used both to verify the theoretical assumptions of the project, to monitor the performance of the structural system during its operational use. The thesis is structured in the following chapters: The first introductive chapter recalls some basic notions of dynamics of structure, focusing the discussion on the problem of systems with multiply degrees of freedom (MDOF), which can represent a generic real system under study, when it is excited with harmonic force or in free vibration. The second chapter is entirely centred on to the problem of dynamic identification process of a structure, if it is subjected to an experimental test in forced vibrations. It first describes the construction of FRF through classical FFT of the recorded signal. A different method, also in the frequency domain, is subsequently introduced; it allows accurately to compute the FRF using the geometric characteristics of the ellipse that represents the direct input-output comparison. The two methods are compared and then the attention is focused on some advantages of the proposed methodology. The third chapter focuses on the study of real structures when they are subjected to experimental test, where the force is not known, like in an ambient or impact test. In this analysis we decided to use the CWT, which allows a simultaneous investigation in the time and frequency domain of a generic signal x(t). The CWT is first introduced to process free oscillations, with excellent results both in terms of frequencies, dampings and vibration modes. The application in the case of ambient vibrations defines accurate modal parameters of the system, although on the damping some important observations should be made. The fourth chapter is still on the problem of post processing data acquired after a vibration test, but this time through the application of discrete wavelet transform (DWT). In the first part the results obtained by the DWT are compared with those obtained by the application of CWT. Particular attention is given to the use of DWT as a tool for filtering the recorded signal, in fact in case of ambient vibrations the signals are often affected by the presence of a significant level of noise. The fifth chapter focuses on another important aspect of the identification process: the model updating. In this chapter, starting from the modal parameters obtained from some environmental vibration tests, performed by the University of Porto in 2008 and the University of Sheffild on the Humber Bridge in England, a FE model of the bridge is defined, in order to define what type of model is able to capture more accurately the real dynamic behaviour of the bridge. The sixth chapter outlines the necessary conclusions of the presented research. They concern the application of a method in the frequency domain in order to evaluate the modal parameters of a structure and its advantages, the advantages in applying a procedure based on the use of wavelet transforms in the process of identification in tests with unknown input and finally the problem of 3D modeling of systems with many degrees of freedom and with different types of uncertainty.
Resumo:
People are daily faced with intertemporal choice, i.e., choices differing in the timing of their consequences, frequently preferring smaller-sooner rewards over larger-delayed ones, reflecting temporal discounting of the value of future outcomes. This dissertation addresses two main goals. New evidence about the neural bases of intertemporal choice is provided. Following the disruption of either the medial orbitofrontal cortex or the insula, the willingness to wait for larger-delayed outcomes is affected in odd directions, suggesting the causal involvement of these areas in regulating the value computation of rewards available with different timings. These findings were also supported by a reported imaging study. Moreover, this dissertation provides new evidence about how temporal discounting can be modulated at a behavioral level through different manipulations, e.g., allowing individuals to think about the distant time, pairing rewards with aversive events, or changing their perceived spatial position. A relationship between intertemporal choice, moral judgements and aging is also discussed. All these findings link together to support a unitary neural model of temporal discounting according to which signals coming from several cortical (i.e., medial orbitofrontal cortex, insula) and subcortical regions (i.e., amygdala, ventral striatum) are integrated to represent the subjective value of both earlier and later rewards, under the top-down regulation of dorsolateral prefrontal cortex. The present findings also support the idea that the process of outcome evaluation is strictly related to the ability to pre-experience and envision future events through self-projection, the anticipation of visceral feelings associated with receiving rewards, and the psychological distance from rewards. Furthermore, taking into account the emotions and the state of arousal at the time of decision seems necessary to understand impulsivity associated with preferring smaller-sooner goods in place of larger-later goods.
Resumo:
Decomposition based approaches are recalled from primal and dual point of view. The possibility of building partially disaggregated reduced master problems is investigated. This extends the idea of aggregated-versus-disaggregated formulation to a gradual choice of alternative level of aggregation. Partial aggregation is applied to the linear multicommodity minimum cost flow problem. The possibility of having only partially aggregated bundles opens a wide range of alternatives with different trade-offs between the number of iterations and the required computation for solving it. This trade-off is explored for several sets of instances and the results are compared with the ones obtained by directly solving the natural node-arc formulation. An iterative solution process to the route assignment problem is proposed, based on the well-known Frank Wolfe algorithm. In order to provide a first feasible solution to the Frank Wolfe algorithm, a linear multicommodity min-cost flow problem is solved to optimality by using the decomposition techniques mentioned above. Solutions of this problem are useful for network orientation and design, especially in relation with public transportation systems as the Personal Rapid Transit. A single-commodity robust network design problem is addressed. In this, an undirected graph with edge costs is given together with a discrete set of balance matrices, representing different supply/demand scenarios. The goal is to determine the minimum cost installation of capacities on the edges such that the flow exchange is feasible for every scenario. A set of new instances that are computationally hard for the natural flow formulation are solved by means of a new heuristic algorithm. Finally, an efficient decomposition-based heuristic approach for a large scale stochastic unit commitment problem is presented. The addressed real-world stochastic problem employs at its core a deterministic unit commitment planning model developed by the California Independent System Operator (ISO).
Resumo:
A servo-controlled automatic machine can perform tasks that involve synchronized actuation of a significant number of servo-axes, namely one degree-of-freedom (DoF) electromechanical actuators. Each servo-axis comprises a servo-motor, a mechanical transmission and an end-effector, and is responsible for generating the desired motion profile and providing the power required to achieve the overall task. The design of a such a machine must involve a detailed study from a mechatronic viewpoint, due to its electric and mechanical nature. The first objective of this thesis is the development of an overarching electromechanical model for a servo-axis. Every loss source is taken into account, be it mechanical or electrical. The mechanical transmission is modeled by means of a sequence of lumped-parameter blocks. The electric model of the motor and the inverter takes into account winding losses, iron losses and controller switching losses. No experimental characterizations are needed to implement the electric model, since the parameters are inferred from the data available in commercial catalogs. With the global model at disposal, a second objective of this work is to perform the optimization analysis, in particular, the selection of the motor-reducer unit. The optimal transmission ratios that minimize several objective functions are found. An optimization process is carried out and repeated for each candidate motor. Then, we present a novel method where the discrete set of available motor is extended to a continuous domain, by fitting manufacturer data. The problem becomes a two-dimensional nonlinear optimization subject to nonlinear constraints, and the solution gives the optimal choice for the motor-reducer system. The presented electromechanical model, along with the implementation of optimization algorithms, forms a complete and powerful simulation tool for servo-controlled automatic machines. The tool allows for determining a wide range of electric and mechanical parameters and the behavior of the system in different operating conditions.
Resumo:
The advances in the aviation field, particularly the development of electric flying vehicles, as UAV and eVTOL, paved the way for setting Urban Air Mobility (UAM) services. UAM would provide services for passengers, goods and emergencies and could offer faster trips than ground ones. It is expected that early UAM operations will be performed at Very Low-Level airspace as 0-500 m Above Ground Level. The purpose of this research is to both explore the main features of UAM and test an aerial network model, which could be integrated in a multimodal transport system where ground and aerial mobility services are provided. Analyses on UAM transport system involved two sub-systems: the transport demand sub-system, i.e., the mobility requirements, and the transport supply sub-system, i.e., the service and facilities enabling mobility. At first, the UAM demand levels and features for an Airport Shuttle service have been explored through a suitable survey, by combining Revealed and Stated Preference methodologies, and by calibrating some discrete mode choice models. Then, the focus has been on the transport supply model for UAM services, by focusing on both the ground access points (vertiports) and the aerial network model. A suitable three-dimensional urban aerial network (3D-UAN) model that could support fast aerial connections between O/D pairs has been proposed. Some tests have been implemented to verify the feasibility of the proposed model. Some flying vehicles supporting an Airport Shuttle service have been simulated on the aerial network, which has been specified in terms of both topological features and link transport costs. The preliminary results have showed that the proposed 3D-UAN model could be suitable for supporting UAM services. As for transport engineering, the UAM system framework proposed in this thesis paves the way for further research on air-ground multimodality in urban areas.