7 resultados para Discovery Tools
em AMS Tesi di Dottorato - Alm@DL - Università di Bologna
Resumo:
The structural peculiarities of a protein are related to its biological function. In the fatty acid elongation cycle, one small carrier protein shuttles and delivers the acyl intermediates from one enzyme to the other. The carrier has to recognize several enzymatic counterparts, specifically interact with each of them, and finally transiently deliver the carried substrate to the active site. Carry out such a complex game requires the players to be flexible and efficiently adapt their structure to the interacting protein or substrate. In a drug discovery effort, the structure-function relationships of a target system should be taken into account to optimistically interfere with its biological function. In this doctoral work, the essential role of structural plasticity in key steps of fatty acid biosynthesis in Plasmodium falciparum is investigated by means of molecular simulations. The key steps considered include the delivery of acyl substrates and the structural rearrangements of catalytic pockets upon ligand binding. The ground-level bases for carrier/enzyme recognition and interaction are also put forward. The structural features of the target have driven the selection of proper drug discovery tools, which captured the dynamics of biological processes and could allow the rational design of novel inhibitors. The model may be perspectively used for the identification of novel pathway-based antimalarial compounds.
Resumo:
The subject of this thesis is multicolour bioluminescence analysis and how it can provide new tools for drug discovery and development.The mechanism of color tuning in bioluminescent reactions is not fully understood yet but it is object of intense research and several hypothesis have been generated. In the past decade key residues of the active site of the enzyme or in the surface surrounding the active site have been identified as responsible of different color emission. Anyway since bioluminescence reaction is strictly dependent from the interaction between the enzyme and its substrate D-luciferin, modification of the substrate can lead to a different emission spectrum too. In the recent years firefly luciferase and other luciferases underwent mutagenesis in order to obtain mutants with different emission characteristics. Thanks to these new discoveries in the bioluminescence field multicolour luciferases can be nowadays employed in bioanalysis for assay developments and imaging purposes. The use of multicolor bioluminescent enzymes expanded the potential of a range of application in vitro and in vivo. Multiple analysis and more information can be obtained from the same analytical session saving cost and time. This thesis focuses on several application of multicolour bioluminescence for high-throughput screening and in vivo imaging. Multicolor luciferases can be employed as new tools for drug discovery and developments and some examples are provided in the different chapters. New red codon optimized luciferase have been demonstrated to be improved tools for bioluminescence imaging in small animal and the possibility to combine red and green luciferases for BLI has been achieved even if some aspects of the methodology remain challenging and need further improvement. In vivo Bioluminescence imaging has known a rapid progress since its first application no more than 15 years ago. It is becoming an indispensable tool in pharmacological research. At the same time the development of more sensitive and implemented microscopes and low-light imager for a better visualization and quantification of multicolor signals would boost the research and the discoveries in life sciences in general and in drug discovery and development in particular.
Resumo:
The study of protein expression profiles for biomarker discovery in serum and in mammalian cell populations needs the continuous improvement and combination of proteins/peptides separation techniques, mass spectrometry, statistical and bioinformatic approaches. In this thesis work two different mass spectrometry-based protein profiling strategies have been developed and applied to liver and inflammatory bowel diseases (IBDs) for the discovery of new biomarkers. The first of them, based on bulk solid-phase extraction combined with matrix-assisted laser desorption/ionization - Time of Flight mass spectrometry (MALDI-TOF MS) and chemometric analysis of serum samples, was applied to the study of serum protein expression profiles both in IBDs (Crohn’s disease and ulcerative colitis) and in liver diseases (cirrhosis, hepatocellular carcinoma, viral hepatitis). The approach allowed the enrichment of serum proteins/peptides due to the high interaction surface between analytes and solid phase and the high recovery due to the elution step performed directly on the MALDI-target plate. Furthermore the use of chemometric algorithm for the selection of the variables with higher discriminant power permitted to evaluate patterns of 20-30 proteins involved in the differentiation and classification of serum samples from healthy donors and diseased patients. These proteins profiles permit to discriminate among the pathologies with an optimum classification and prediction abilities. In particular in the study of inflammatory bowel diseases, after the analysis using C18 of 129 serum samples from healthy donors and Crohn’s disease, ulcerative colitis and inflammatory controls patients, a 90.7% of classification ability and a 72.9% prediction ability were obtained. In the study of liver diseases (hepatocellular carcinoma, viral hepatitis and cirrhosis) a 80.6% of prediction ability was achieved using IDA-Cu(II) as extraction procedure. The identification of the selected proteins by MALDITOF/ TOF MS analysis or by their selective enrichment followed by enzymatic digestion and MS/MS analysis may give useful information in order to identify new biomarkers involved in the diseases. The second mass spectrometry-based protein profiling strategy developed was based on a label-free liquid chromatography electrospray ionization quadrupole - time of flight differential analysis approach (LC ESI-QTOF MS), combined with targeted MS/MS analysis of only identified differences. The strategy was used for biomarker discovery in IBDs, and in particular of Crohn’s disease. The enriched serum peptidome and the subcellular fractions of intestinal epithelial cells (IECs) from healthy donors and Crohn’s disease patients were analysed. The combining of the low molecular weight serum proteins enrichment step and the LCMS approach allowed to evaluate a pattern of peptides derived from specific exoprotease activity in the coagulation and complement activation pathways. Among these peptides, particularly interesting was the discovery of clusters of peptides from fibrinopeptide A, Apolipoprotein E and A4, and complement C3 and C4. Further studies need to be performed to evaluate the specificity of these clusters and validate the results, in order to develop a rapid serum diagnostic test. The analysis by label-free LC ESI-QTOF MS differential analysis of the subcellular fractions of IECs from Crohn’s disease patients and healthy donors permitted to find many proteins that could be involved in the inflammation process. Among them heat shock protein 70, tryptase alpha-1 precursor and proteins whose upregulation can be explained by the increased activity of IECs in Crohn’s disease were identified. Follow-up studies for the validation of the results and the in-depth investigation of the inflammation pathways involved in the disease will be performed. Both the developed mass spectrometry-based protein profiling strategies have been proved to be useful tools for the discovery of disease biomarkers that need to be validated in further studies.
Resumo:
The discovery of the Cosmic Microwave Background (CMB) radiation in 1965 is one of the fundamental milestones supporting the Big Bang theory. The CMB is one of the most important source of information in cosmology. The excellent accuracy of the recent CMB data of WMAP and Planck satellites confirmed the validity of the standard cosmological model and set a new challenge for the data analysis processes and their interpretation. In this thesis we deal with several aspects and useful tools of the data analysis. We focus on their optimization in order to have a complete exploitation of the Planck data and contribute to the final published results. The issues investigated are: the change of coordinates of CMB maps using the HEALPix package, the problem of the aliasing effect in the generation of low resolution maps, the comparison of the Angular Power Spectrum (APS) extraction performances of the optimal QML method, implemented in the code called BolPol, and the pseudo-Cl method, implemented in Cromaster. The QML method has been then applied to the Planck data at large angular scales to extract the CMB APS. The same method has been applied also to analyze the TT parity and the Low Variance anomalies in the Planck maps, showing a consistent deviation from the standard cosmological model, the possible origins for this results have been discussed. The Cromaster code instead has been applied to the 408 MHz and 1.42 GHz surveys focusing on the analysis of the APS of selected regions of the synchrotron emission. The new generation of CMB experiments will be dedicated to polarization measurements, for which are necessary high accuracy devices for separating the polarizations. Here a new technology, called Photonic Crystals, is exploited to develop a new polarization splitter device and its performances are compared to the devices used nowadays.
Resumo:
Neuronal microtubules assembly and dynamics are regulated by several proteins including (MT)-associated protein tau, whose aberrant hyperphosphorylation promotes its dissociation from MTs and its abnormal deposition into neurofibrillary tangles, a common neurotoxic hallmarks of neurodegenerative tauopathies. To date, no disease-modifying drugs have been approved to combat CNS tau-related diseases. The multifactorial etiology of these conditions represents one of the major limits in the discovery of effective therapeutic options. In addition, tau protein functions are orchestrated by diverse post-translational modifications among which phosphorylation mediated by PKs plays a leading role. In this context, conventional single-target therapies are often inadequate in restoring perturbed networks and fraught with adverse side-effects. This thesis reports two distinct approaches to hijack MT defects in neurons. The first is focused on the rational design and synthesis of first-in-class triple inhibitors of GSK-3β, FYN, and DYRK1A, three close-related PKs, which act as master regulators of aberrant tau hyperphosphorylation. A merged multi-target pharmacophore strategy was applied to simultaneously modulate all three targets and achieve a disease-modifying effect. Optimization of ARN25068 by a computationally and crystallographic driven SAR exploration, allowed to rationalize the key structural modifications to maintain a balanced potency against all three targets and develop a new generation of quite well-balanced analogs exhibiting improved physicochemical properties, a good in vitro ADME profile, and promising cell-based anti-tau phosphorylation activity. In Part II, MT-stabilizing compounds have been developed to compensate MT defects in tau-related pathologies. Intensive chemical effort has been devoted to scaling up BL-0884, identified as a promising MT-normalizing TPD, which exhibited favorable ADME-PK, including brain penetration, oral bioavailability, and brain pharmacodynamic activity. A suitable functionalization of the exposed hydroxyl moiety of BL-0884 was carried out to generate corresponding esters and amides possessing a wide range of applications as prodrugs and active targeting for cancer chemotherapy.
Resumo:
Hematological cancers are a heterogeneous family of diseases that can be divided into leukemias, lymphomas, and myelomas, often called “liquid tumors”. Since they cannot be surgically removable, chemotherapy represents the mainstay of their treatment. However, it still faces several challenges like drug resistance and low response rate, and the need for new anticancer agents is compelling. The drug discovery process is long-term, costly, and prone to high failure rates. With the rapid expansion of biological and chemical "big data", some computational techniques such as machine learning tools have been increasingly employed to speed up and economize the whole process. Machine learning algorithms can create complex models with the aim to determine the biological activity of compounds against several targets, based on their chemical properties. These models are defined as multi-target Quantitative Structure-Activity Relationship (mt-QSAR) and can be used to virtually screen small and large chemical libraries for the identification of new molecules with anticancer activity. The aim of my Ph.D. project was to employ machine learning techniques to build an mt-QSAR classification model for the prediction of cytotoxic drugs simultaneously active against 43 hematological cancer cell lines. For this purpose, first, I constructed a large and diversified dataset of molecules extracted from the ChEMBL database. Then, I compared the performance of different ML classification algorithms, until Random Forest was identified as the one returning the best predictions. Finally, I used different approaches to maximize the performance of the model, which achieved an accuracy of 88% by correctly classifying 93% of inactive molecules and 72% of active molecules in a validation set. This model was further applied to the virtual screening of a small dataset of molecules tested in our laboratory, where it showed 100% accuracy in correctly classifying all molecules. This result is confirmed by our previous in vitro experiments.
Resumo:
In the literature on philosophical practices, despite the crucial role that argumentation plays in these activities, no specific argumentative theories have ever been proposed to assist the figure of the facilitator in conducting philosophical dialogue and to enhance student’s critical thinking skills. The dissertation starts from a cognitive perspective that challenges the classic Cartesian notion of rationality by focusing on limits and biases of human reasoning. An argumentative model (WRAT – Weak Reasoning Argumentative Theory) is then outlined in order to respond to the needs of philosophical dialogue. After justifying the claim that this learning activity, among other inductive methodologies, is the most suitable for critical thinking education, I inquired into the specific goal of ‘arguing’ within this context by means of the tools provided by Speech Act Theory: the speaker’s intention is to construct new knowledge by questioning her own and other’s beliefs. The model proposed has been theorized on this assumption, starting from which the goals, and, in turn, the related norms, have been pinpointed. In order to include all the epistemic attitudes required to accomplish the complex task of arguing in philosophical dialogue, I needed to integrate two opposed cognitive accounts, Dual Process Theory and Evolutionary Approach, that, although they provide incompatible descriptions of reasoning, can be integrated to provide a normative account of argumentation. The model, apart from offering a theoretical contribution to argumentation studies, is designed to be applied to the Italian educational system, in particular to classes in technical and professional high schools belonging to the newly created network Inventio. This initiative is one of the outcomes of the research project by the same name, which also includes an original Syllabus, research seminars, a monitoring action and publications focused on introducing philosophy, in the form of workshop activities, into technical and professional schools.