5 resultados para Disasters

em AMS Tesi di Dottorato - Alm@DL - Università di Bologna


Relevância:

10.00% 10.00%

Publicador:

Resumo:

Flood disasters are a major cause of fatalities and economic losses, and several studies indicate that global flood risk is currently increasing. In order to reduce and mitigate the impact of river flood disasters, the current trend is to integrate existing structural defences with non structural measures. This calls for a wider application of advanced hydraulic models for flood hazard and risk mapping, engineering design, and flood forecasting systems. Within this framework, two different hydraulic models for large scale analysis of flood events have been developed. The two models, named CA2D and IFD-GGA, adopt an integrated approach based on the diffusive shallow water equations and a simplified finite volume scheme. The models are also designed for massive code parallelization, which has a key importance in reducing run times in large scale and high-detail applications. The two models were first applied to several numerical cases, to test the reliability and accuracy of different model versions. Then, the most effective versions were applied to different real flood events and flood scenarios. The IFD-GGA model showed serious problems that prevented further applications. On the contrary, the CA2D model proved to be fast and robust, and able to reproduce 1D and 2D flow processes in terms of water depth and velocity. In most applications the accuracy of model results was good and adequate to large scale analysis. Where complex flow processes occurred local errors were observed, due to the model approximations. However, they did not compromise the correct representation of overall flow processes. In conclusion, the CA model can be a valuable tool for the simulation of a wide range of flood event types, including lowland and flash flood events.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

In order to handle Natural disasters, emergency areas are often individuated over the territory, close to populated centres. In these areas, rescue services are located which respond with resources and materials for population relief. A method of automatic positioning of these centres in case of a flood or an earthquake is presented. The positioning procedure consists of two distinct parts developed by the research group of Prof Michael G. H. Bell of Imperial College, London, refined and applied to real cases at the University of Bologna under the coordination of Prof Ezio Todini. There are certain requirements that need to be observed such as the maximum number of rescue points as well as the number of people involved. Initially, the candidate points are decided according to the ones proposed by the local civil protection services. We then calculate all possible routes from each candidate rescue point to all other points, generally using the concept of the "hyperpath", namely a set of paths each one of which may be optimal. The attributes of the road network are of fundamental importance, both for the calculation of the ideal distance and eventual delays due to the event measured in travel time units. In a second phase, the distances are used to decide the optimum rescue point positions using heuristics. This second part functions by "elimination". In the beginning, all points are considered rescue centres. During every interaction we wish to delete one point and calculate the impact it creates. In each case, we delete the point that creates less impact until we reach the number of rescue centres we wish to keep.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

L’elaborato finale presentato per la tesi di Dottorato analizza e riconduce a unitarietà, per quanto possibile, alcune delle attività di ricerca da me svolte durante questi tre anni, il cui filo conduttore è l'impatto ambientale delle attività umane e la promozione dello sviluppo sostenibile. Il mio filone di ricerca è stato improntato, dal punto di vista di politica economica, sull'analisi storica dello sviluppo del settore agricolo dall'Unità d'Italia ai giorni nostri e dei cambiamenti avvenuti in contemporanea nel contesto socio-economico e territoriale nazionale, facendo particolare riferimento alle tematiche legate ai consumi e alla dipendenza energetica ed all'impatto ambientale. Parte della mia ricerca è stata, infatti, incentrata sull'analisi dello sviluppo della Green Economy, in particolare per quanto riguarda il settore agroalimentare e la produzione di fonti di energia rinnovabile. Enfasi viene posta sia sulle politiche implementate a livello comunitario e nazionale, sia sul cambiamento dei consumi, in particolare per quanto riguarda gli acquisti di prodotti biologici. La Green Economy è vista come fattore di sviluppo e opportunità per uscire dall'attuale contesto di crisi economico-finanziaria. Crisi, che è strutturale e di carattere duraturo, affiancata da una crescente problematica ambientale dovuta all'attuale modello produttivo, fortemente dipendente dai combustibili fossili. Difatti la necessità di cambiare paradigma produttivo promuovendo la sostenibilità è visto anche in ottica di mitigazione del cambiamento climatico e dei suoi impatti socio-economici particolare dal punto di vista dei disastri ambientali. Questo punto è analizzato anche in termini di sicurezza internazionale e di emergenza umanitaria, con riferimento al possibile utilizzo da parte delle organizzazioni di intervento nei contesti di emergenza di tecnologie alimentate da energia rinnovabile. Dando così una risposta Green ad una problematica esacerbata dall'impatto dello sviluppo delle attività umane.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

The so called cascading events, which lead to high-impact low-frequency scenarios are rising concern worldwide. A chain of events result in a major industrial accident with dreadful (and often unpredicted) consequences. Cascading events can be the result of the realization of an external threat, like a terrorist attack a natural disaster or of “domino effect”. During domino events the escalation of a primary accident is driven by the propagation of the primary event to nearby units, causing an overall increment of the accident severity and an increment of the risk associated to an industrial installation. Also natural disasters, like intense flooding, hurricanes, earthquake and lightning are found capable to enhance the risk of an industrial area, triggering loss of containment of hazardous materials and in major accidents. The scientific community usually refers to those accidents as “NaTechs”: natural events triggering industrial accidents. In this document, a state of the art of available approaches to the modelling, assessment, prevention and management of domino and NaTech events is described. On the other hand, the relevant work carried out during past studies still needs to be consolidated and completed, in order to be applicable in a real industrial framework. New methodologies, developed during my research activity, aimed at the quantitative assessment of domino and NaTech accidents are presented. The tools and methods provided within this very study had the aim to assist the progress toward a consolidated and universal methodology for the assessment and prevention of cascading events, contributing to enhance safety and sustainability of the chemical and process industry.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

Over the last decades the impact of natural disasters to the global environment is becoming more and more severe. The number of disasters has dramatically increased, as well as the cost to the global economy and the number of people affected. Among the natural disaster, flood catastrophes are considered to be the most costly, devastating, broad extent and frequent, because of the tremendous fatalities, injuries, property damage, economic and social disruption they cause to the humankind. In the last thirty years, the World has suffered from severe flooding and the huge impact of floods has caused hundreds of thousands of deaths, destruction of infrastructures, disruption of economic activity and the loss of property for worth billions of dollars. In this context, satellite remote sensing, along with Geographic Information Systems (GIS), has become a key tool in flood risk management analysis. Remote sensing for supporting various aspects of flood risk management was investigated in the present thesis. In particular, the research focused on the use of satellite images for flood mapping and monitoring, damage assessment and risk assessment. The contribution of satellite remote sensing for the delineation of flood prone zones, the identification of damaged areas and the development of hazard maps was explored referring to selected cases of study.