2 resultados para Digital Art
em AMS Tesi di Dottorato - Alm@DL - Università di Bologna
Resumo:
The dissertation addresses the still not solved challenges concerned with the source-based digital 3D reconstruction, visualisation and documentation in the domain of archaeology, art and architecture history. The emerging BIM methodology and the exchange data format IFC are changing the way of collaboration, visualisation and documentation in the planning, construction and facility management process. The introduction and development of the Semantic Web (Web 3.0), spreading the idea of structured, formalised and linked data, offers semantically enriched human- and machine-readable data. In contrast to civil engineering and cultural heritage, academic object-oriented disciplines, like archaeology, art and architecture history, are acting as outside spectators. Since the 1990s, it has been argued that a 3D model is not likely to be considered a scientific reconstruction unless it is grounded on accurate documentation and visualisation. However, these standards are still missing and the validation of the outcomes is not fulfilled. Meanwhile, the digital research data remain ephemeral and continue to fill the growing digital cemeteries. This study focuses, therefore, on the evaluation of the source-based digital 3D reconstructions and, especially, on uncertainty assessment in the case of hypothetical reconstructions of destroyed or never built artefacts according to scientific principles, making the models shareable and reusable by a potentially wide audience. The work initially focuses on terminology and on the definition of a workflow especially related to the classification and visualisation of uncertainty. The workflow is then applied to specific cases of 3D models uploaded to the DFG repository of the AI Mainz. In this way, the available methods of documenting, visualising and communicating uncertainty are analysed. In the end, this process will lead to a validation or a correction of the workflow and the initial assumptions, but also (dealing with different hypotheses) to a better definition of the levels of uncertainty.
Resumo:
Pain is a highly complex phenomenon involving intricate neural systems, whose interactions with other physiological mechanisms are not fully understood. Standard pain assessment methods, relying on verbal communication, often fail to provide reliable and accurate information, which poses a critical challenge in the clinical context. In the era of ubiquitous and inexpensive physiological monitoring, coupled with the advancement of artificial intelligence, these new tools appear as the natural candidates to be tested to address such a challenge. This thesis aims to conduct experimental research to develop digital biomarkers for pain assessment. After providing an overview of the state-of-the-art regarding pain neurophysiology and assessment tools, methods for appropriately conditioning physiological signals and controlling confounding factors are presented. The thesis focuses on three different pain conditions: cancer pain, chronic low back pain, and pain experienced by patients undergoing neurorehabilitation. The approach presented in this thesis has shown promise, but further studies are needed to confirm and strengthen these results. Prior to developing any models, a preliminary signal quality check is essential, along with the inclusion of personal and health information in the models to limit their confounding effects. A multimodal approach is preferred for better performance, although unimodal analysis has revealed interesting aspects of the pain experience. This approach can enrich the routine clinical pain assessment procedure by enabling pain to be monitored when and where it is actually experienced, and without the involvement of explicit communication,. This would improve the characterization of the pain experience, aid in antalgic therapy personalization, and bring timely relief, with the ultimate goal of improving the quality of life of patients suffering from pain.