2 resultados para Diète pauvre en sodium
em AMS Tesi di Dottorato - Alm@DL - Università di Bologna
Resumo:
This work presents first a study of the national and international laws in the fields of safety, security and safeguards. The international treaties and the recommendations issued by the IAEA as well as the national regulations in force in France, the United States and Italy are analyzed. As a result of this, a comparison among them is presented. Given the interest of the Japan Atomic Energy Agency for the aspects of criminal penalties and monetary, also the Japanese case is analyzed. The main part of this work was held at the JAEA in the field of proliferation resistance (PR) and physical protection (PP) of a GEN IV sodium fast reactor. For this purpose the design of the system is completed and the PR & PP methodology is applied to obtain data usable by designers for the improvement of the system itself. Due to the presence of sensitive data, not all the details can be disclosed. The reactor site of a hypothetical and commercial sodium-cooled fast neutron nuclear reactor system (SFR) is used as the target NES for the application of the methodology. The methodology is applied to all the PR and PP scenarios: diversion, misuse and breakout; theft and sabotage. The methodology is applied to the SFR to check if this system meets the target of PR and PP as described in the GIF goal; secondly, a comparison between the SFR and a LWR is performed to evaluate if and how it would be possible to improve the PR&PP of the SFR. The comparison is implemented according to the example development target: achieving PR&PP similar or superior to domestic and international ALWR. Three main actions were performed: implement the evaluation methodology; characterize the PR&PP for the nuclear energy system; identify recommendations for system designers through the comparison.
Resumo:
Several possibilities are arising aiming the development of “greener”, more sustainable energy storage systems. One point is the completely water-based processing of battery electrodes, thus being able to renounce the use of toxic solvents in the preparation process. Despite its advantage of lower cost and eco-friendlyness, there is the need of similar mechanical and electrochemichal behavior for boosting this preparation mode. Another point – accompanying the water-based processing - is the replacement of solvent-based polymer binders by water-based ones. These binders can be based on fluorinated, crude-oil based polymers on the one side, but also on naturally abundant and economic friendly biopolymers. The most common anode materials, graphite and lithium titanate (LTO), have been subjected a water-based preparation route with different binder systems. LTO is a promising anode material for lithium ion batteries (LIBs), as it shows excellent safety characteristics, does not form a significant SEI and its volume change upon intercalation of lithium ions is negligible. Unfortunately, this material suffers from a rather low electric conductivity - that is why an intensive study on improved current collector surfaces for LTO electrodes was performed. In order to go one step ahead towards sustainable energy storage, anode and cathode active materials for a sodium ion battery were synthesized. Anode active material resulted in a successful product which was then subjected to further electrochemical tests. In this PhD work the development of “greener” energy storage possibilities is tested under several aspects. The ecological impact of raw materials and required battery components is examined in detail.