3 resultados para Design Practice
em AMS Tesi di Dottorato - Alm@DL - Università di Bologna
Resumo:
The present study aims at assessing the innovation strategies adopted within a regional economic system, the Italian region Emilia-Romagna, as it faced the challenges of a changing international scenario. As the strengthening of the regional innovative capabilities is regarded as a keystone to foster a new phase of economic growth, it is important also to understand how the local industrial, institutional, and academic actors have tackled the problem of innovation in the recent past. In this study we explore the approaches to innovation and the strategies adopted by the main regional actors through three different case studies. Chapter 1 provides a general survey of the innovative performance of the regional industries over the past two decades, as it emerges from statistical data and systematic comparisons at the national and European levels. The chapter also discusses the innovation policies that the regional government set up since 2001 in order to strengthen the collaboration among local economic actors, including universities and research centres. As mechanics is the most important regional industry, chapter 2 analyses the combination of knowledge and practices utilized in the period 1960s-1990s in the design of a particular kind of machinery produced by G.D S.p.A., a world-leader in the market of tobacco packaging machines. G.D is based in Bologna, the region’s capital, and is at the centre of the most important Italian packaging district. In chapter 3 the attention turns to the institutional level, focusing on how the local public administrations, and the local, publicly-owned utility companies have dealt with the creation of new telematic networks on the regional territory during the 1990s and 2000s. Finally, chapter 4 assesses the technology transfer carried out by the main university of the region – the University of Bologna – by focusing on the patenting activities involving its research personnel in the period 1960-2010.
Resumo:
In the last decades, global food supply chains had to deal with the increasing awareness of the stakeholders and consumers about safety, quality, and sustainability. In order to address these new challenges for food supply chain systems, an integrated approach to design, control, and optimize product life cycle is required. Therefore, it is essential to introduce new models, methods, and decision-support platforms tailored to perishable products. This thesis aims to provide novel practice-ready decision-support models and methods to optimize the logistics of food items with an integrated and interdisciplinary approach. It proposes a comprehensive review of the main peculiarities of perishable products and the environmental stresses accelerating their quality decay. Then, it focuses on top-down strategies to optimize the supply chain system from the strategical to the operational decision level. Based on the criticality of the environmental conditions, the dissertation evaluates the main long-term logistics investment strategies to preserve products quality. Several models and methods are proposed to optimize the logistics decisions to enhance the sustainability of the supply chain system while guaranteeing adequate food preservation. The models and methods proposed in this dissertation promote a climate-driven approach integrating climate conditions and their consequences on the quality decay of products in innovative models supporting the logistics decisions. Given the uncertain nature of the environmental stresses affecting the product life cycle, an original stochastic model and solving method are proposed to support practitioners in controlling and optimizing the supply chain systems when facing uncertain scenarios. The application of the proposed decision-support methods to real case studies proved their effectiveness in increasing the sustainability of the perishable product life cycle. The dissertation also presents an industry application of a global food supply chain system, further demonstrating how the proposed models and tools can be integrated to provide significant savings and sustainability improvements.
Resumo:
Cable-driven parallel robots offer significant advantages in terms of workspace dimensions and payload capability. They are attractive for many industrial tasks to be performed on a large scale, such as handling and manufacturing, without a substantial increase in costs and mechanical complexity with respect to a small-scale application. However, since cables can only sustain tensile stresses, cable tensions must be kept within positive limits during the end-effector motion. This problem can be managed by overconstraining the end-effector and controlling cable tensions. Tension control is typically achieved by mounting a load sensor on all cables, and using specific control algorithms to avoid cable slackness or breakage while the end-effector is controlled in a desired position. These algorithms require multiple cascade control loops and they can be complex and computationally demanding. To simplify the control of overconstrained cable-driven parallel robots, this Thesis proposes suitable mechanical design and hybrid control strategies. It is shown how a convenient design of the cable guidance system allows kinematic modeling to be simplified, without introducing geometric approximations. This guidance system employs swiveling pulleys equipped with position and tension sensors and provides a parallelogram arrangement of cables. Furthermore, a hybrid force/position control in the robot joint space is adopted. According to this strategy, a particular set of cables is chosen to be tension-controlled, whereas the other cables are length-controlled. The force-controlled cables are selected based on the computation of a novel index called force-distribution sensitivity to cable-tension errors. This index aims to evaluate the maximum expected cable-tension error in the length-controlled cables if a unit tension error is committed in the force-controlled cables. In practice, the computation of the force-distribution sensitivity allows determining which cables are best to be force-controlled, to ensure the lowest error in the overall force distribution when a hybrid force/position joint-space strategy is used.