2 resultados para Depth from focus

em AMS Tesi di Dottorato - Alm@DL - Università di Bologna


Relevância:

100.00% 100.00%

Publicador:

Resumo:

In this thesis we have developed solutions to common issues regarding widefield microscopes, facing the problem of the intensity inhomogeneity of an image and dealing with two strong limitations: the impossibility of acquiring either high detailed images representative of whole samples or deep 3D objects. First, we cope with the problem of the non-uniform distribution of the light signal inside a single image, named vignetting. In particular we proposed, for both light and fluorescent microscopy, non-parametric multi-image based methods, where the vignetting function is estimated directly from the sample without requiring any prior information. After getting flat-field corrected images, we studied how to fix the problem related to the limitation of the field of view of the camera, so to be able to acquire large areas at high magnification. To this purpose, we developed mosaicing techniques capable to work on-line. Starting from a set of overlapping images manually acquired, we validated a fast registration approach to accurately stitch together the images. Finally, we worked to virtually extend the field of view of the camera in the third dimension, with the purpose of reconstructing a single image completely in focus, stemming from objects having a relevant depth or being displaced in different focus planes. After studying the existing approaches for extending the depth of focus of the microscope, we proposed a general method that does not require any prior information. In order to compare the outcome of existing methods, different standard metrics are commonly used in literature. However, no metric is available to compare different methods in real cases. First, we validated a metric able to rank the methods as the Universal Quality Index does, but without needing any reference ground truth. Second, we proved that the approach we developed performs better in both synthetic and real cases.

Relevância:

40.00% 40.00%

Publicador:

Resumo:

We use data from about 700 GPS stations in the EuroMediterranen region to investigate the present-day behavior of the the Calabrian subduction zone within the Mediterranean-scale plates kinematics and to perform local scale studies about the strain accumulation on active structures. We focus attenction on the Messina Straits and Crati Valley faults where GPS data show extentional velocity gradients of ∼3 mm/yr and ∼2 mm/yr, respectively. We use dislocation model and a non-linear constrained optimization algorithm to invert for fault geometric parameters and slip-rates and evaluate the associated uncertainties adopting a bootstrap approach. Our analysis suggest the presence of two partially locked normal faults. To investigate the impact of elastic strain contributes from other nearby active faults onto the observed velocity gradient we use a block modeling approach. Our models show that the inferred slip-rates on the two analyzed structures are strongly impacted by the assumed locking width of the Calabrian subduction thrust. In order to frame the observed local deformation features within the present- day central Mediterranean kinematics we realyze a statistical analysis testing the indipendent motion (w.r.t. the African and Eurasias plates) of the Adriatic, Cal- abrian and Sicilian blocks. Our preferred model confirms a microplate like behaviour for all the investigated blocks. Within these kinematic boundary conditions we fur- ther investigate the Calabrian Slab interface geometry using a combined approach of block modeling and χ2ν statistic. Almost no information is obtained using only the horizontal GPS velocities that prove to be a not sufficient dataset for a multi-parametric inversion approach. Trying to stronger constrain the slab geometry we estimate the predicted vertical velocities performing suites of forward models of elastic dislocations varying the fault locking depth. Comparison with the observed field suggest a maximum resolved locking depth of 25 km.