12 resultados para Deprivation

em AMS Tesi di Dottorato - Alm@DL - Università di Bologna


Relevância:

10.00% 10.00%

Publicador:

Resumo:

Introduction. Postnatal neurogenesis in the hippocampal dentate gyrus, can be modulated by numerous determinants, such as hormones, transmitters and stress. Among the factors positively interfering with neurogenesis, the complexity of the environment appears to play a particularly striking role. Adult mice reared in an enriched environment produce more neurons and exhibit better performance in hippocampus-specific learning tasks. While the effects of complex environments on hippocampal neurogenesis are well documented, there is a lack of information on the effects of living under socio-sensory deprivation conditions. Due to the immaturity of rats and mice at birth, studies dealing with the effects of environmental enrichment on hippocampal neurogenesis were carried out in adult animals, i.e. during a period of relatively low rate of neurogenesis. The impact of environment is likely to be more dramatic during the first postnatal weeks, because at this time granule cell production is remarkably higher than at later phases of development. The aim of the present research was to clarify whether and to what extent isolated or enriched rearing conditions affect hippocampal neurogenesis during the early postnatal period, a time window characterized by a high rate of precursor proliferation and to elucidate the mechanisms underlying these effects. The experimental model chosen for this research was the guinea pig, a precocious rodent, which, at 4-5 days of age can be independent from maternal care. Experimental design. Animals were assigned to a standard (control), an isolated, or an enriched environment a few days after birth (P5-P6). On P14-P17 animals received one daily bromodeoxyuridine (BrdU) injection, to label dividing cells, and were sacrificed either on P18, to evaluate cell proliferation or on P45, to evaluate cell survival and differentiation. Methods. Brain sections were processed for BrdU immunhistochemistry, to quantify the new born and surviving cells. The phenotype of the surviving cells was examined by means of confocal microscopy and immunofluorescent double-labeling for BrdU and either a marker of neurons (NeuN) or a marker of astrocytes (GFAP). Apoptotic cell death was examined with the TUNEL method. Serial sections were processed for immunohistochemistry for i) vimentin, a marker of radial glial cells, ii) BDNF (brain-derived neurotrofic factor), a neurotrophin involved in neuron proliferation/survival, iii) PSA-NCAM (the polysialylated form of the neural cell adhesion molecule), a molecule associated with neuronal migration. Total granule cell number in the dentate gyrus was evaluated by stereological methods, in Nissl-stained sections. Results. Effects of isolation. In P18 isolated animals we found a reduced cell proliferation (-35%) compared to controls and a lower expression of BDNF. Though in absolute terms P45 isolated animals had less surviving cells than controls, they showed no differences in survival rate and phenotype percent distribution compared to controls. Evaluation of the absolute number of surviving cells of each phenotype showed that isolated animals had a reduced number of cells with neuronal phenotype than controls. Looking at the location of the new neurons, we found that while in control animals 76% of them had migrated to the granule cell layer, in isolated animals only 55% of the new neurons had reached this layer. Examination of radial glia cells of P18 and P45 animals by vimentin immunohistochemistry showed that in isolated animals radial glia cells were reduced in density and had less and shorter processes. Granule cell count revealed that isolated animals had less granule cells than controls (-32% at P18 and -42% at P45). Effects of enrichment. In P18 enriched animals there was an increase in cell proliferation (+26%) compared to controls and a higher expression of BDNF. Though in both groups there was a decline in the number of BrdU-positive cells by P45, enriched animals had more surviving cells (+63) and a higher survival rate than controls. No differences were found between control and enriched animals in phenotype percent distribution. Evaluation of the absolute number of cells of each phenotype showed that enriched animals had a larger number of cells of each phenotype than controls. Looking at the location of cells of each phenotype we found that enriched animals had more new neurons in the granule cell layer and more astrocytes and cells with undetermined phenotype in the hilus. Enriched animals had a higher expression of PSA-NCAM in the granule cell layer and hilus Vimentin immunohistochemistry showed that in enriched animals radial glia cells were more numerous and had more processes.. Granule cell count revealed that enriched animals had more granule cells than controls (+37% at P18 and +31% at P45). Discussion. Results show that isolation rearing reduces hippocampal cell proliferation but does not affect cell survival, while enriched rearing increases both cell proliferation and cell survival. Changes in the expression of BDNF are likely to contribute to he effects of environment on precursor cell proliferation. The reduction and increase in final number of granule neurons in isolated and enriched animals, respectively, are attributable to the effects of environment on cell proliferation and survival and not to changes in the differentiation program. As radial glia cells play a pivotal role in neuron guidance to the granule cell layer, the reduced number of radial glia cells in isolated animals and the increased number in enriched animals suggests that the size of radial glia population may change dynamically, in order to match changes in neuron production. The high PSA-NCAM expression in enriched animals may concur to favor the survival of the new neurons by facilitating their migration to the granule cell layer. Conclusions. By using a precocious rodent we could demonstrate that isolated/enriched rearing conditions, at a time window during which intense granule cell proliferation takes place, lead to a notable decrease/increase of total granule cell number. The time-course and magnitude of postnatal granule cell production in guinea pigs are more similar to the human and non-human primate condition than in rats and mice. Translation of current data to humans would imply that exposure of children to environments poor/rich of stimuli may have a notably large impact on dentate neurogenesis and, very likely, on hippocampus dependent memory functions.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

Background: It is well known, since the pioneristic observation by Jenkins and Dallenbach (Am J Psychol 1924;35:605-12), that a period of sleep provides a specific advantage for the consolidation of newly acquired informations. Recent research about the possible enhancing effect of sleep on memory consolidation has focused on procedural memory (part of non-declarative memory system, according to Squire’s taxonomy), as it appears the memory sub-system for which the available data are more consistent. The acquisition of a procedural skill follows a typical time course, consisting in a substantial practice-dependent learning followed by a slow, off-line improvement. Sleep seems to play a critical role in promoting the process of slow learning, by consolidating memory traces and making them more stable and resistant to interferences. If sleep is critical for the consolidation of a procedural skill, then an alteration of the organization of sleep should result in a less effective consolidation, and therefore in a reduced memory performance. Such alteration can be experimentally induced, as in a deprivation protocol, or it can be naturally observed in some sleep disorders as, for example, in narcolepsy. In this research, a group of narcoleptic patients, and a group of matched healthy controls, were tested in two different procedural abilities, in order to better define the size and time course of sleep contribution to memory consolidation. Experimental Procedure: A Texture Discrimination Task (Karni & Sagi, Nature 1993;365:250-2) and a Finger Tapping Task (Walker et al., Neuron 2002;35:205-11) were administered to two indipendent samples of drug-naive patients with first-diagnosed narcolepsy with cataplexy (International Classification of Sleep Disorder 2nd ed., 2005), and two samples of matched healthy controls. In the Texture Discrimination task, subjects (n=22) had to learn to recognize a complex visual array on the screen of a personal computer, while in the Finger Tapping task (n=14) they had to press a numeric sequence on a standard keyboard, as quickly and accurately as possible. Three subsequent experimental sessions were scheduled for each partecipant, namely a training session, a first retrieval session the next day, and a second retrieval session one week later. To test for possible circadian effects on learning, half of the subjects performed the training session at 11 a.m. and half at 17 p.m. Performance at training session was taken as a measure of the practice-dependent learning, while performance of subsequent sessions were taken as a measure of the consolidation level achieved respectively after one and seven nights of sleep. Between training and first retrieval session, all participants spent a night in a sleep laboratory and underwent a polygraphic recording. Results and Discussion: In both experimental tasks, while healthy controls improved their performance after one night of undisturbed sleep, narcoleptic patients showed a non statistically significant learning. Despite this, at the second retrieval session either healthy controls and narcoleptics improved their skills. Narcoleptics improved relatively more than controls between first and second retrieval session in the texture discrimination ability, while their performance remained largely lower in the motor (FTT) ability. Sleep parameters showed a grater fragmentation in the sleep of the pathological group, and a different distribution of Stage 1 and 2 NREM sleep in the two groups, being thus consistent with the hypothesis of a lower consolidation power of sleep in narcoleptic patients. Moreover, REM density of the first part of the night of healthy subjects showed a significant correlation with the amount of improvement achieved at the first retrieval session in TDT task, supporting the hypothesis that REM sleep plays an important role in the consolidation of visuo-perceptual skills. Taken together, these results speak in favor of a slower, rather than lower consolidation of procedural skills in narcoleptic patients. Finally, an explanation of the results, based on the possible role of sleep in contrasting the interference provided by task repetition is proposed.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

Introduction: Apoptotic cell death of cardiomyocytes is involved in several cardiovascular diseases including ischemia, hypertrophy and heart failure, thus representing a potential therapeutic target. Apoptosis of cardiac cells can be induced experimentally by several stimuli including hypoxia, serum withdrawal or combination of both. Several lines of research suggest that neurohormonal mechanisms play a central role in the progression of heart failure. In particular, excessive activation of the sympathetic nervous system or the renin-angiotensin-aldosterone system is known to have deleterious effects on the heart. Recent studies report that norepinephrine (NE), the primary transmitter of sympathetic nervous system, and aldosterone (ALD), which is actively produced in failing human heart, are able to induce apoptosis of rat cardiomyocytes. Polyamines are biogenic amines involved in many cellular processes, including apoptosis. Actually it appears that these molecules can act as promoting, modulating or protective agents in apoptosis depending on apoptotic stimulus and cellular model. We have studied the involvement of polyamines in the apoptosis of cardiac cells induced in a model of simulated ischemia and following treatment with NE or ALD. Methods: H9c2 cardiomyoblasts were exposed to a condition of simulated ischemia, consisting of hypoxia plus serum deprivation. Cardiomyocyte cultures were prepared from 1-3 day-old neonatal Wistar rat hearts. Polyamine depletion was obtained by culturing the cells in the presence of α-difluoromethylornithine (DFMO). Polyamines were separated and quantified in acidic cellular extracts by HPLC after derivatization with dansyl chloride. Caspase activity was measured by the cleavage of the fluorogenic peptide substrate. Ornithine decarboxylase (ODC) activity was measured by estimation of the release of 14C-CO2 from 14C-ornithine. DNA fragmentation was visualized by the method of terminal transferase-mediated dUTP nick end-labeling (TUNEL), and DNA laddering on agarose gel electophoresis. Cytochrome c was detected by immunoflorescent staining. Activation of signal transduction pathways was investigated by western blotting. Results: The results indicate that simulated ischemia, NE and ALD cause an early induction of the activity of ornithine decarboxylase (ODC), the first enzyme in polyamine biosynthesis, followed by a later increase of caspase activity, a family of proteases that execute the death program and induce cell death. This effect was prevented in the presence of DFMO, an irreversible inhibitor of ODC, thus suggesting that polyamines are involved in the execution of the death program activated by these stimuli. In H9c2 cells DFMO inhibits several molecular events related to apoptosis that follow simulated ischemia, such as the release of cytochrome c from mitochondria, down-regulation of Bcl-xL, and DNA fragmentation. The anti-apoptotic protein survivin is down-regulated after ALD or NE treatement and polyamine depletion obtained by DFMO partially opposes survivin decrease. Moreover, a study of key signal transduction pathways governing cell death and survival, revealed an involvement of AMP activated protein kinase (AMPK) and AKT kinase, in the modulation by polyamines of the response of cardiomyocytes to NE. In fact polyamine depleted cells show an altered pattern of AMPK and AKT activation that may contrast apoptosis and appears to result from a differential effect on the specific phosphatases that dephosphorylate and switch off these signaling proteins. Conclusions: These results indicate that polyamines are involved in the execution of the death program activated in cardiac cells by heart failure-related stimuli, like ischemia, ALD and NE, and suggest that their apoptosis facilitating action is mediated by a network of specific phosphatases and kinases.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

During the wake sleep (W-S) cycle in mammals, the alternation of the different states, wake, NREM sleep (NREMS) and REM sleep (REMS), is associated not only with electroencephalographic or behavioural changes, but also with modifications in the physiological regulations of the organism. The most evident change is the existence of a suspension of the somatic and autonomic thermoregulatory responses during REMS. Since thermoregulation is prevalently controlled by the Preoptic Area-Anterior Hypothalamus (PO-AH), its suspension during REM sleep has been taken as a sign of an impairment of the hypothalamic integrative activity that could explain the modifications in physiological regulation observed in this sleep stage. The recent finding from our laboratory that the secretion of the antidiuretic hormone arginine-vasopressin (AVP) in response to a central osmotic stimulation is quantitatively the same throughout the different stages of the W-S cycle, has shown that hypothalamic osmoregulation is not suspended during REMS. In order to clarify the extent of the hypothalamic involvement in the regulation of the W-S cycle, we have studied the effects of three days of water deprivation and of two days of recovery during which animals were allowed a free access to water, on the architecture of the W-S cycle. The condition of water deprivation represents a severe challenge involving neuroendocrine and autonomic hypothalamic regulations. In contradiction with thermoregulatory studies, in which it has been clearly demonstrated that a thermal challenge selectively reduces REMS occurrence, the results of this study show that REMS occurrence is mildly reduced only in the third day of water deprivation. The most striking effects produced by water deprivation appear to concern NREMS, which shows a selective and significant reduction in its slow EEG activity (delta-power) but not in its duration. The recovery period is mainly characterized by a disruption of the normal circadian rhythm of REMS occurrence and by a rebound of the delta power in NREMS. Thus, an autonomic challenge different from those related to thermoregulation and an endocrine challenge as the continuous secretion of AVP show to exert different effects on the stages of the wake-sleep cycle. Also, this study demonstrates that the impairment of the hypothalamic integrative activity thought to characterize the occurrence of REMS only involves thermoregulatory structures.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

The hydrogen production in the green microalga Chlamydomonas reinhardtii was evaluated by means of a detailed physiological and biotechnological study. First, a wide screening of the hydrogen productivity was done on 22 strains of C. reinhardtii, most of which mutated at the level of the D1 protein. The screening revealed for the first time that mutations upon the D1 protein may result on an increased hydrogen production. Indeed, productions ranged between 0 and more than 500 mL hydrogen per liter of culture (Torzillo, Scoma et al., 2007a), the highest producer (L159I-N230Y) being up to 5 times more performant than the strain cc124 widely adopted in literature (Torzillo, Scoma, et al., 2007b). Improved productivities by D1 protein mutants were generally a result of high photosynthetic capabilities counteracted by high respiration rates. Optimization of culture conditions were addressed according to the results of the physiological study of selected strains. In a first step, the photobioreactor (PBR) was provided with a multiple-impeller stirring system designed, developed and tested by us, using the strain cc124. It was found that the impeller system was effectively able to induce regular and turbulent mixing, which led to improved photosynthetic yields by means of light/dark cycles. Moreover, improved mixing regime sustained higher respiration rates, compared to what obtained with the commonly used stir bar mixing system. As far as the results of the initial screening phase are considered, both these factors are relevant to the hydrogen production. Indeed, very high energy conversion efficiencies (light to hydrogen) were obtained with the impeller device, prooving that our PBR was a good tool to both improve and study photosynthetic processes (Giannelli, Scoma et al., 2009). In the second part of the optimization, an accurate analysis of all the positive features of the high performance strain L159I-N230Y pointed out, respect to the WT, it has: (1) a larger chlorophyll optical cross-section; (2) a higher electron transfer rate by PSII; (3) a higher respiration rate; (4) a higher efficiency of utilization of the hydrogenase; (5) a higher starch synthesis capability; (6) a higher per cell D1 protein amount; (7) a higher zeaxanthin synthesis capability (Torzillo, Scoma et al., 2009). These information were gathered with those obtained with the impeller mixing device to find out the best culture conditions to optimize productivity with strain L159I-N230Y. The main aim was to sustain as long as possible the direct PSII contribution, which leads to hydrogen production without net CO2 release. Finally, an outstanding maximum rate of 11.1 ± 1.0 mL/L/h was reached and maintained for 21.8 ± 7.7 hours, when the effective photochemical efficiency of PSII (ΔF/F'm) underwent a last drop to zero. If expressed in terms of chl (24.0 ± 2.2 µmoles/mg chl/h), these rates of production are 4 times higher than what reported in literature to date (Scoma et al., 2010a submitted). DCMU addition experiments confirmed the key role played by PSII in sustaining such rates. On the other hand, experiments carried out in similar conditions with the control strain cc124 showed an improved final productivity, but no constant PSII direct contribution. These results showed that, aside from fermentation processes, if proper conditions are supplied to selected strains, hydrogen production can be substantially enhanced by means of biophotolysis. A last study on the physiology of the process was carried out with the mutant IL. Although able to express and very efficiently utilize the hydrogenase enzyme, this strain was unable to produce hydrogen when sulfur deprived. However, in a specific set of experiments this goal was finally reached, pointing out that other than (1) a state 1-2 transition of the photosynthetic apparatus, (2) starch storage and (3) anaerobiosis establishment, a timely transition to the hydrogen production is also needed in sulfur deprivation to induce the process before energy reserves are driven towards other processes necessary for the survival of the cell. This information turned out to be crucial when moving outdoor for the hydrogen production in a tubular horizontal 50-liter PBR under sunlight radiation. First attempts with laboratory grown cultures showed that no hydrogen production under sulfur starvation can be induced if a previous adaptation of the culture is not pursued outdoor. Indeed, in these conditions the hydrogen production under direct sunlight radiation with C. reinhardtii was finally achieved for the first time in literature (Scoma et al., 2010b submitted). Experiments were also made to optimize productivity in outdoor conditions, with respect to the light dilution within the culture layers. Finally, a brief study of the anaerobic metabolism of C. reinhardtii during hydrogen oxidation has been carried out. This study represents a good integration to the understanding of the complex interplay of pathways that operate concomitantly in this microalga.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

Several studies showed that sleep loss/fragmentation may have a negative impact on cognitive performance, mood and autonomic activity. Specific neurocognitive domains, such as executive function (i.e.,prefrontal cortex), seems to be particularly vulnerable to sleep loss. Pearson et al.(2006) evaluated 16 RLS patients compared to controls by cognitive tests, including those particularly sensitive to prefrontal cortical (PFC) functioning and sleep loss. RLS patients showed significant deficits on two of the three PFC tests. It has been recently reported that RLS is associated with psychiatric manifestations. A high prevalence of depressive symptoms has been found in patients with RLS(Rothdach AJ et al., 2000). RLS could cause depression through its adverse influences on sleep and energy. On the other hand, symptoms of depression such as sleep deprivation, poor nutrition or lack of exercise may predispose an individual to the development of RLS. Moreover, depressed patients may amplify mild RLS, making occasional RLS symptoms appear to meet threshold criteria. The specific treatment of depression could be also implicated, since antidepressant compounds may worsen RLS and PLMD(Picchietti D et al., 2005; Damsa C et al., 2004). Interestingly, treatments used to relieve RLS symptoms (dopamine agonists) seem to have an antidepressant effects in RLS depressed patients(Saletu M et al., 2002&2003). During normal sleep there is a well-regulated pattern of the autonomic function, modulated by changes in sleep stages. It has been reported that chronic sleep deprivation is associated with cardiovascular events. In patients with sleep fragmentation increased number of arousals and increased cyclic alternating pattern rate is associated with an increase in sympathetic activity. It has been demonstrated that PLMS occurrence is associated with a shift to increased sympathetic activity without significant changes in cardiac parasympathetic activity (Sforza E et al., 2005). An increased association of RLS with hypertension and heart disease has been documented in several studies(Ulfberg J et al., 2001; Ohayon MM et al., 2002).

Relevância:

10.00% 10.00%

Publicador:

Resumo:

The survey approachs the issue of health and the problem of its effective protection in a context of deprivation of liberty and coercion, which is the prison. The theoretical reflection born from the reform of the Legislative Decree 230/99 which marked the transition from an employee by the Prison Health within prison a fully integrated in the National Health Service. The comparison between an institution of health promotion and institution of punishment which may operate on the same subject held produces multiple attrits, making their relationship problematic. The work shows the daily difficulties in the management of prison health within the institution, physician-patient between different health care roles, and between the latter and prison workers. The coexistence, in fact, is not always harmonious though quite often it is common sense and the willingness of operators to reduce barriers: overcrowding, limited resources and insufficient staff make the application of the rule and therefore the right to goal a difficult to be pursued. It is designed for a scheme of semi-structured interview essay is divided into 3 sections covering: "staff and its functions", "health reform" and "health of the prisoner"; questions were directed to doctors, nurses and psychologists engaged inside the prison of Rimini with the specific aim of examining the ambivalent relationship between the demand for health care in prisons and the need for security and a clear - albeit partial - point of view. We tried to reconstruct the situation of prison health care through the perception of prison operators, capturing the problematic issues that deal on both issues is instrumental to the experience of persons detained by analyzing, in terms of operators , what happens inside of a prison institution in everyday health care.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

Il sarcoma di Ewing (ES) è un tumore maligno pediatrico dell’apparato scheletrico; è associato a una traslocazione specifica codificante la proteina di fusione EWS-FLI1 e all’alta espressione di CD99, una glicoproteina di membrana fisiologicamente coinvolta in diversi processi biologici. EWS-FLI1 e CD99, sono riportati avere ruoli divergenti nella modulazione della malignità e del differenziamento di ES. CD99 inoltre è riportato modulare il pathway di MAPK, il quale interagendo con molteplici fattori di trascrizione partecipa a processi di proliferazione e differenziamento. In questo studio abbiamo investigato in due linee cellulari di ES silenziate per CD99 (TC-71shCD99 e IOR/CARshCD99) l’attività basale di diversi fattori trascrizionali quali: NF-kBp65, AP1, Elk-1, E2F e CREB. L’unico fattore trascrizionale statisticamente significativo è risultato essere NF-kBp65 e abbiamo valutato il suo ruolo nel differenziamento neurale di cellule di ES e la relazione con EWS-FLI1 e CD99. L’attività trascrizionale di NF-kB è stata valutata attraverso gene reporter assay in linee cellulari di ES a diversa espressione di CD99, EWS-FLI1 e NF-kB stesso. Il differenziamento neurale è stato valutato come espressione di βIII-Tubulin in immunofluorescenza. Il silenziamento di CD99 induce una down-modulazione dell’attività trascrizionale di NF-kB, mentre il knockdown di EWS-FLI1 ne induce un’aumento. Inoltre, il silenziamento di EWS-FLI1 non è in grado di contrastare la riduzione dell’attività di NF-kB osservata dopo silenziamento di CD99, suggerendo un ruolo dominante del CD99 nel signaling di NF-kB. Cellule deprivate di CD99 ma non di EWS-FLI1, mostrano un fenotipo differenziato in senso neurale, fenotipo che viene perso quando le cellule sono indotte a sovraesprimere NF-kB. Inoltre, in cellule CD99 positive, il silenziamento di NF-kB induce un leggero differenziamento neurale. In conclusione, questi dati hanno evidenziato il ruolo di NF-kB nel differenziamento di cellule di ES e che potrebbe essere un potenziale target nel ridurre la progressione di questo tumore.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

Obesity often predisposes to coronary heart disease, heart failure, and sudden death. Also, several studies suggest a reciprocal enhancing interaction between obesity and sleep curtailment. Aim of the present study was to go deeper in the understanding of sleep and cardiovascular regulation in an animal model of diet-induced obesity (DIO). According to this, Wake-Sleep (W-S) regulation, and W-S dependent regulation of cardiovascular and metabolic/thermoregulatory function was studied in DIO rats, under normal laboratory conditions and during sleep deprivation and the following recovery period, enhancing either wake or sleep, respectively. After 8 weeks of the delivery of a hypercaloric (HC) diet, treated animals were heavier than those fed a normocaloric (NC) diet (NC: 441 ±17g; HC: 557±17g). HC rats slept more than NC ones during the activity period (Dark) of the normal 12h:12h light-dark (LD) cycle (Wake: 67.3±1.2% and 57.2 ±1.6%; NREM sleep (NREMS): 26.8±1.0% and 34.0±1.4%; REM sleep (REMS): 5.7±0. 6% and 8.6±0.7%; for NC and HC, respectively; p<0.05 for all). HC rats were hypertensive throughout the W-S states, as shown by the mean arterial blood pressure values across the 24-h period (Wake: 90.0±5.3 and 97.3±1.3; NREMS: 85.1±5.5 and 92.2±1.2; REMS: 87.2±4.5 and 96.5±1.1, mmHg for NC and HC, respectively; p<0.05 for all). Also, HC rats appeared to be slightly bradycardic compared to NC ones (Wake: 359.8±9.3 and 352.4±7.7; NREMS: 332.5±10.1 and 328.9±5.4; REMS: 338.5±9.3 and 334.4±5.8; bpm for NC and HC, respectively; p<0.05 for Wake). In HC animals, sleep regulation was not apparently altered during the sleep rebound observed in the recovery period following sleep deprivation, although REMS rebound appeared to be quicker in NC animals. In conclusion, these results indicate that in the rat obesity interfere with W-S and cardiovascular regulation and that DIO rats are suitable for further studies aimed at a better understanding of obesity comorbidities.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

Le alterazioni della funzionalità mitocondriale detengono un ruolo cruciale nella patogenesi della malattia di Alzheimer (AD), sostenendo il processo neurodegenerativo attraverso meccanismi quali la riduzione della disponibilità energetica e la iperproduzione di ROS. Alle numerose ipotesi di patogenesi dell’AD, si è recentemente affiancata la cosiddetta ipotesi vascolare. Nei soggetti AD è stata riscontrata una significativa riduzione della disponibilità di ossigeno a livello neuronale (ipossia neuronale). Da numerosi studi è poi emerso che l’ipossia gioca un ruolo fondamentale nello sviluppo dell’AD contribuendo a più vie patogenetiche contemporaneamente. Tuttavia, non sono stati ancora chiariti tutti i meccanismi attraverso cui l’ipossia esplica la sua azione di danno. Lo scopo di questo studio è stato quello di contribuire a chiarire il ruolo patologico dell’ipossia nell’AD, analizzando principalmente le alterazioni della funzionalità mitocondriale indotte dalla riduzione della disponibilità di ossigeno. Nella prima fase dello studio cellule PC12 sono state coltivate in presenza di β-amiloide e ipossia. In questo modello abbiamo osservato un potenziamento dei fenomeni di deplezione dell’ATP e di generazione delle ROS indotti dalla Aβ quando anche l’ipossia era presente come fonte di danno cellulare, ipotizzando per i due fattori un effetto congiunto di tipo additivo. Nella seconda fase abbiamo esposto all’ipossia fibroblasti prelevati da pazienti AD portatori di mutazioni a carico dei geni APP e PSEN. La presenza di mutazioni predisponenti ad un fenotipo AD era in grado di determinare un danno bioenergetico e ossidativo. Le alterazioni bioenergetiche riscontrate in normossia risultavano ulteriormente potenziate quando i fibroblasti erano coltivati in ipossia, mentre lo stato di stress ossidativo veniva evidenziato solo in condizioni ipossiche. Sulla base dei risultati finora conseguiti si può ipotizzare che uno dei meccanismi attraverso cui l’ipossia esplica la sua azione di danno nella AD, possa essere dovuto alla capacità di potenziare ulteriormente le alterazioni della funzionalità mitocondriale.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

Bone remodelling is a fundamental mechanism for removing and replacing bone during adaptation of the skeleton to mechanical loads. Skeletal unloading leads to severe hypoxia (1%O2) in the bone microenvironment resulting in imbalanced bone remodelling that favours bone resorption. Hypoxia, in vivo, is a physiological condition for osteocytes, 5% O2 is more likely physiological for osteocytes than 20% O2, as osteocytes are embedded deep inside the mineralized bone matrix. Osteocytes are thought to be the mechanosensors of bone and have been shown to orchestrate bone formation and resorption. Oxygen-deprived osteocytes seem undergo apoptosis and actively stimulate osteoclasts. Hypoxia and oxidative stress increase 150-kDa oxygen-regulated protein (ORP 150) expression in different cell types. It is a novel endoplasmic-reticulum-associated chaperone induced by hypoxia/ischemia. It well known that ORP 150 plays an important role in the cellular adaptation to hypoxia, as anti-apoptotic factor, and seems to be involved in osteocytes differentiations. The aims of the present study are 1) to determine the cellular and molecular response of the osteocytes at two different conditions of oxygen deprivation, 1% and 5% of O2 compared to the atmospheric oxygen concentration at several time points. 2) To clarify the role of hypoxic osteocytes in bone homeostasis through the detection of releasing of soluble factors (RANKL, OPG, PGE2 and Sclerostin). 3) To detect the activation of osteoclast and osteoblast induced by condition media collected from hypoxic and normoxic osteocytes. The data obtained in this study shows that hypoxia compromises the viability of osteocytes and induces apoptosis. Unlike in other cells types, ORP 150 in MLO-Y4 does not seem to be regulated early during hypoxia. The release of soluble factors and the evaluation of osteoclast and osteoblast activation shows that osteocytes, grown under severe oxygen deprivation, play a role in the regulation of both bone resorption and bone formation.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

La detenzione amministrativa degli stranieri, pur condividendo il carattere tipicamente afflittivo e stigmatizzante delle pene, non si fonda sulla commissione di un reato e non gode delle medesime garanzie previste dal sistema della giustizia penale. Nel nostro ordinamento l’inadeguatezza della legislazione, l’ampio margine di discrezionalità rimesso all’autorità di pubblica sicurezza, nonché il debole potere di sindacato giurisdizionale rimesso all’autorità giudiziaria, raggiungono il loro apice problematico nell’ambito delle pratiche di privazione della libertà personale che hanno per destinatari gli stranieri maggiormente vulnerabili, ossia quelli appena giunti sul territorio e il cui status giuridico non è ancora stato accertato (c.d. situazione di pre-admittance). E’ proprio sulla loro condizione che il presente lavoro si focalizza maggiormente. Le detenzioni de facto degli stranieri in condizione di pre-admittance sono analizzate, nel primo capitolo, a partire dal “caso Lampedusa”, descritto alla luce dell’indagine sul campo condotta dall’Autrice. Nel secondo capitolo viene ricostruito lo statuto della libertà personale dello straniero sulla base dei principi costituzionali e, nel terzo capitolo, sono analizzati i principi che informano il diritto alla libertà personale nell’ambito delle fonti sovranazionali, con particolare riferimento al diritto dell’Unione Europea e al sistema della Convenzione Europea dei Diritti dell’Uomo. Sulla scorta dei principi indagati, nel quarto capitolo è tracciata l’evoluzione legislativa in materia di detenzione amministrativa dello straniero in Italia e, nel quinto capitolo, è approfondito il tema dei Centri dell’immigrazione e delle regole che li disciplinano. Nelle conclusioni, infine, sono tirate le fila del percorso tracciato, attraverso la valutazione degli strumenti di tutela in grado di prevenire le pratiche di privazione della libertà informali e di garantire uno standard minimo nella tutela della libertà individuale, anche nelle zone di frontiera del nostro ordinamento.