2 resultados para Dependent Sex Determination

em AMS Tesi di Dottorato - Alm@DL - Università di Bologna


Relevância:

90.00% 90.00%

Publicador:

Resumo:

Mitochondria are inherited maternally in most metazoans. However, in some bivalves, two mitochondrial lineages are present: one transmitted through eggs (F), the other through sperm (M). This is called Doubly Uniparental Inheritance (DUI). During male embryo development, spermatozoon mitochondria aggregate and end up in the primordial germ cells, while they are dispersed in female embryos. The molecular mechanisms of segregation patterns are still unknown. In the DUI species Ruditapes philippinarum, I examined sperm mitochondria distribution by MitoTracker, microtubule staining and TEM, and I localized germ line determinants with immunocytochemical analysis. I also analyzed the gonad transcriptome, searching for genes involved in reproduction and sex determination. Moreover, I analyzed an M-type specific open reading frame that could be responsible for maintenance/degradation of M mitochondria during embryo development. These transcripts were also localized in tissues using in situ hybridization. As in Mytilus, two distribution patterns of M mitochondria were detected in R. philippinarum, supporting that they are related to DUI. Moreover, the first division midbody concurs in positioning aggregated M mitochondria on the animal-vegetal axis of the male embryo: in organisms with spiral segmentation this zone is not involved in further cleavages, so aggregation is maintained. Moreover, sperm mitochondria reach the same embryonic area where germ plasm is transferred, suggesting their contribution in male germ line formation. The finding of reproduction and ubiquitination transcripts led to formulate a model in which ubiquitination genes stored in female oocytes during gametogenesis would activate sex-gene expression in the early embryonic developmental stages (preformation). Only gametogenetic cells were labeled by in situ hybridization, proving their specific transcription in developing gametes. Other than having a role in sex determination, some ubiquination factors could also be involved in mitochondrial inheritance, and their differential expression could be responsible for the different fate of sperm mitochondria in the two sexes.

Relevância:

80.00% 80.00%

Publicador:

Resumo:

Il ginandromorfismo è il fenomeno per il quale un organismo manifesta contemporaneamente caratteristiche fenotipiche maschili e femminili. Per quanto riguarda la Classe degli Insetti, numerose segnalazioni di tale manifestazione sono reperibili in letteratura, ma un’ interpretazione generale sulle origini e sulle cause che la generano non è ancora stata fornita. Lo scopo di questa tesi è stato quello di studiare il fenomeno per quanto riguarda l’Imenottero Diprionide Diprion pini (Linnaeus, 1758) attraverso l’allevamento controllato dell’insetto, esperimenti di inincrocio, studio del cariotipo e la valutazione della comparsa e la distribuzione dei tessuti maschili e femminili negli individui ginandromorfi. Altri parametri biologici (quali i pesi degli individui) sono stati presi in considerazione nel tentativo di fornire una spiegazione riguardo i meccanismi genetici che regolano la determinazione del sesso in questa specie. Gynandromorphism is the phenomenon by which an organism manifests phenotypic characteristics both male and female. For the class of insects, numerous reports of this event can be found in the literature, but a general interpretation of the origins and causes that generate it has not yet been provided. The purpose of this thesis was to study the phenomenon with regard to the Diprionid wasp Diprion pini (Linnaeus, 1758) through the controlled rearing of the insect, inbreeding experiments, study of the karyotype and evaluation of the appearance and distribution of male and female tissue in gynandromorph specimens. Other biological parameters (such as the weights of individuals) were taken into account in an attempt to provide an explanation of the genetic mechanisms that regulate sex determination in this species.