3 resultados para Dendritic Fasciculation

em AMS Tesi di Dottorato - Alm@DL - Università di Bologna


Relevância:

20.00% 20.00%

Publicador:

Resumo:

Down syndrome (DS) is a genetic pathology characterized by brain hypotrophy and severe cognitive disability. Although defective neurogenesis is an important determinant of cognitive impairment, a severe dendritic pathology appears to be an equally important factor. It is well established that serotonin plays a pivotal role both on neurogenesis and dendritic maturation. Since the serotonergic system is profoundly altered in the DS brain, we wondered whether defects in the hippocampal development can be rescued by treatment with fluoxetine, a selective serotonin reuptake inhibitor and a widely used antidepressant drug. A previous study of our group showed that fluoxetine fully restores neurogenesis in the Ts65Dn mouse model of DS and that this effect is accompanied by a recovery of memory functions. The goal of the current study was to establish whether fluoxetine also restores dendritic development and maturation. In mice aged 45 days, treated with fluoxetine in the postnatal period P3-P15, we examined the dendritic arbor of newborn and mature granule cells of the dentate gyrus (DG). The granule cells of trisomic mice had a severely hypotrophic dendritic arbor, fewer spines and a reduced innervation than euploid mice. Treatment with fluoxetine fully restored all these defects. Moreover the impairment of excitatory and inhibitory inputs to CA3 pyramidal neurons was fully normalized in treated trisomic mice, indicating that fluoxetine can rescue functional connectivity between the DG and CA3. The widespread beneficial effects of fluoxetine on the hippocampal formation suggest that early treatment with fluoxetine can be a suitable therapy, possibly usable in humans, to restore the physiology of the hippocampal networks and, hence, memory functions. These findings may open the way for future clinical trials in children and adolescents with DS.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

Dendritic Cells (DCs) derived from human blood monocytes that have been nurtured in GM-CSF and IL-4, followed by maturation in a monocyte-conditioned medium, are the most potent APCs known. These DCs have many features of primary DCs, including the expression of molecules that enhance antigen capture and selective receptors that guide DCs to and from several sites in the body, where they elicit the T cell mediated immune response. For these features, immature DCs (iDC) loaded with tumor antigen and matured (mDC) with a standard cytokine cocktail, are used for therapeutic vaccination in clinical trials of different cancers. However, the efficacy of DCs in the development of immunocompetence is critically influenced by the type (whole lysate, proteins, peptides, mRNA), the amount and the time of exposure of the tumor antigens used for loading in the presentation phase. The aim of the present study was to create instruments to acquire more information about DC antigen uptake and presentation mechanisms to improve the clinical efficacy of DCbased vaccine. In particular, two different tumor antigen were studied: the monoclonal immunoglobulin (IgG or IgA) produced in Myeloma Multiple, and the whole lysate obtained from melanoma tissues. These proteins were conjugated with fluorescent probe (FITC) to evaluate the kinetic of tumor antigen capturing process and its localization into DCs, by cytofluorimetric and fluorescence microscopy analysis, respectively. iDC pulsed with 100μg of IgG-FITC/106 cells were monitored from 2 to 22 hours after loading. By the cytofluorimetric analysis it was observed that the monoclonal antibody was completely captured after 2 hours from pulsing, and was decreased into mDC in 5 hours after maturation stimulus. To monitor the lysate uptake, iDC were pulsed with 80μg of tumor lysate/106 cells, then were monitored in the 2h to 22 hours interval time after loading. Then, to reveal difference between increasing lysate concentration, iDC were loaded with 20-40-80-100-200-400μg of tumor lysate/106 cells and monitored at 2-4-8-13h from pulsing. By the cytofluorimetric analysis, it was observed that, the 20-40-80-100μg uptake, after 8 hours loading was completed reaching a plateau phase. For 200 and 400μg the mean fluorescence of cells increased until 13h from pulsing. The lysate localization into iDC was evaluated with conventional and confocal fluorescence microscopy analysis. In the 2h to 8h time interval from loading an intensive and diffuse fluorescence was observed within the cytoplasmic compartment. Moreover, after 8h, the lysate fluorescence appeared to be organized in a restricted cloudy-shaded area with a typical polarized aspect. In addition, small fluorescent spots clearly appeared with an increment in the number and fluorescence intensity. The nature of these spot-like formations and cloudy area is now being investigated detecting the colocalization of the fluorescence lysate and specific markers for lysosomes, autophagosomes, endoplasmic reticulum and MHCII positive vesicles.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

Neuronal networks exhibit diverse types of plasticity, including the activity-dependent regulation of synaptic functions and refinement of synaptic connections. In addition, continuous generation of new neurons in the “adult” brain (adult neurogenesis) represents a powerful form of structural plasticity establishing new connections and possibly implementing pre-existing neuronal circuits (Kempermann et al, 2000; Ming and Song, 2005). Neurotrophins, a family of neuronal growth factors, are crucially involved in the modulation of activity-dependent neuronal plasticity. The first evidence for the physiological importance of this role evolved from the observations that the local administration of neurotrophins has dramatic effects on the activity-dependent refinement of synaptic connections in the visual cortex (McAllister et al, 1999; Berardi et al, 2000; Thoenen, 1995). Moreover, the local availability of critical amounts of neurotrophins appears to be relevant for the ability of hippocampal neurons to undergo long-term potentiation (LTP) of the synaptic transmission (Lu, 2004; Aicardi et al, 2004). To achieve a comprehensive understanding of the modulatory role of neurotrophins in integrated neuronal systems, informations on the mechanisms about local neurotrophins synthesis and secretion as well as ditribution of their cognate receptors are of crucial importance. In the first part of this doctoral thesis I have used electrophysiological approaches and real-time imaging tecniques to investigate additional features about the regulation of neurotrophins secretion, namely the capability of the neurotrophin brain-derived neurotrophic factor (BDNF) to undergo synaptic recycling. In cortical and hippocampal slices as well as in dissociated cell cultures, neuronal activity rapidly enhances the neuronal expression and secretion of BDNF which is subsequently taken up by neurons themselves but also by perineuronal astrocytes, through the selective activation of BDNF receptors. Moreover, internalized BDNF becomes part of the releasable source of the neurotrophin, which is promptly recruited for activity-dependent recycling. Thus, we described for the first time that neurons and astrocytes contain an endocytic compartment competent for BDNF recycling, suggesting a specialized form of bidirectional communication between neurons and glia. The mechanism of BDNF recycling is reminiscent of that for neurotransmitters and identifies BDNF as a new modulator implicated in neuro- and glio-transmission. In the second part of this doctoral thesis I addressed the role of BDNF signaling in adult hippocampal neurogenesis. I have generated a transgenic mouse model to specifically investigate the influence of BDNF signaling on the generation, differentiation, survival and connectivity of newborn neurons into the adult hippocampal network. I demonstrated that the survival of newborn neurons critically depends on the activation of the BDNF receptor TrkB. The TrkB-dependent decision regarding life or death in these newborn neurons takes place right at the transition point of their morphological and functional maturation Before newborn neurons start to die, they exhibit a drastic reduction in dendritic complexity and spine density compared to wild-type newborn neurons, indicating that this receptor is required for the connectivity of newborn neurons. Both the failure to become integrated and subsequent dying lead to impaired LTP. Finally, mice lacking a functional TrkB in the restricted population of newborn neurons show behavioral deficits, namely increased anxiety-like behavior. These data suggest that the integration and establishment of proper connections by newly generated neurons into the pre-existing network are relevant features for regulating the emotional state of the animal.