3 resultados para Delay lock loops

em AMS Tesi di Dottorato - Alm@DL - Università di Bologna


Relevância:

30.00% 30.00%

Publicador:

Resumo:

Topoisomerase I (Top1) poisons are among the most clinically-effective drugs used for colon, ovary and lung cancers. Unpublished data from our lab have recently revealed that the structurally-unrelated Top1 poisons, Camptothecin (CPT) and Indimitecan (LMP776), induce the formation of micronuclei (MNi) in human cancer cells. In addition, MNi trigger an innate immune gene response by stimulating the cGAS/STING pathway. As the mechanisms of MNi formation are not fully determined, our aim is here to establish how MNi form after Top1 poisoning. Using immunofluorescence assays and EdU labelling of nascent DNAs, our results show that, after 24 hours of recovery, a short treatment with sub-cytotoxic doses of Top1 poisons induces the formation of MNi that do not contain newly synthetized (EdU+) DNA. We also saw that Top1 poisons delay replication machinery reducing EdU incorporation and produce significant levels of the damage markers γH2AX and p53BP1 in S-phase cells but not in G1 and G2/M cells. The results also show that MNi formation is dependent on R-loops, as RNaseH1 overexpression markedly reduces Top1 induced MNi. Genome-wide mapping of R-loops by DRIP-seq technique revealed that R-loop levels are both decreased and increased by CPT. In particular, increased R-loops are mainly found at active genes and always overlapped with Top1cc sites. We also found that increased R-loops overlap with lamina-associated chromatin domains while decreased R-loops correlate with replication origin sites. Overall, our data are consistent with the formation of MNi due to R-loop increase and under-replication at specific regions caused by Top1 poisons. These results will eventually help in developing new strategies for effective personalized interventions by using Top1-targeted compounds as immuno-modulators in cancer patients.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

That humans and animals learn from interaction with the environment is a foundational idea underlying nearly all theories of learning and intelligence. Learning that certain outcomes are associated with specific actions or stimuli (both internal and external), is at the very core of the capacity to adapt behaviour to environmental changes. In the present work, appetitive and aversive reinforcement learning paradigms have been used to investigate the fronto-striatal loops and behavioural correlates of adaptive and maladaptive reinforcement learning processes, aiming to a deeper understanding of how cortical and subcortical substrates interacts between them and with other brain systems to support learning. By combining a large variety of neuroscientific approaches, including behavioral and psychophysiological methods, EEG and neuroimaging techniques, these studies aim at clarifying and advancing the knowledge of the neural bases and computational mechanisms of reinforcement learning, both in normal and neurologically impaired population.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Non-B DNA structures like R-loops and G-quadruplexes play a pivotal role in several cellular vital processes like DNA transcription regulation. Misregulation of said non-canonical DNA structures can often lead to genome instability, DNA damage, and, eventually, to the activation of an innate immune response. For such reasons they have been studied as adjuvants in anticancer therapies. Here we studied drugs targeting R-loops (Top1 poisons) and G4s (hydrazone derivatives) in order to observe their effects in terms of DNA damage induction and, subsequently, activation of innate immune response. We studied how non-cytotoxic doses of ampthotecin and LMP-776 impact on genome instability, are capable to induce DNA damage and micronuclei, and, eventually lead to an innate immune gene response via the cGAS/STING pathway. G-quadruplexes are another ubiquitous, non-canonical DNA structure, more abundant in telomeric regions, demonstrating a marked relation with the impairment of telomerase and the regulation of DNA replication and transcription. Furthermore, we investigated the properties of new-synthesized molecules belonging to the highly promising class of hydrazone derivatives, in terms of cytotoxicity, ability to stabilize G4-structures, induce DNA damage, and activate interferon-B production. Both Top1 poisons and G4-stabilizers possess several features that can be very useful in clinical applications, in light of their ability to stimulate innate immune response factors and exert a certain cell-killing power, plus they offer a broad and diverse range of treatment options in order to face a variety of patient treatment needs. It is for these very reasons that it is of uttermost importance that further studies are conducted on these compounds, in order to synthesize new and increasingly powerful and flexible ones, with fewer side effects to customize therapies on specific cancers’ and patients’ features.