7 resultados para Degenerating Hyperbolic Manifolds
em AMS Tesi di Dottorato - Alm@DL - Università di Bologna
Resumo:
We study automorphisms and the mapping class group of irreducible holomorphic symplectic (IHS) manifolds. We produce two examples of manifolds of K3[2] type with a symplectic action of the alternating group A7. Our examples are realized as double EPW-sextics, the large cardinality of the group allows us to prove the irrationality of the associated families of Gushel-Mukai threefolds. We describe the group of automorphisms of double EPW-cubes. We give an answer to the Nielsen realization problem for IHS manifolds in analogy to the case of K3 surfaces, determining when a finite group of mapping classes fixes an Einstein (or Kähler-Einstein) metric. We describe, for some deformation classes, the mapping class group and its representation in second cohomology. We classify non-symplectic involutions of manifolds of OG10 type determining the possible invariant and coinvariant lattices. We study non-symplectic involutions on LSV manifolds that are geometrically induced from non-symplectic involutions on cubic fourfolds.
Resumo:
In this thesis work I analyze higher spin field theories from a first quantized perspective, finding in particular new equations describing complex higher spin fields on Kaehler manifolds. They are studied by means of worldline path integrals and canonical quantization, in the framework of supersymmetric spinning particle theories, in order to investigate their quantum properties both in flat and curved backgrounds. For instance, by quantizing a spinning particle with one complex extended supersymmetry, I describe quantum massless (p,0)-forms and find a worldline representation for their effective action on a Kaehler background, as well as exact duality relations. Interesting results are found also in the definition of the functional integral for the so called O(N) spinning particles, that will allow to study real higher spins on curved spaces. In the second part, I study Weyl invariant field theories by using a particular mathematical framework known as tractor calculus, that enable to maintain at each step manifest Weyl covariance.
Resumo:
Assessment of the integrity of structural components is of great importance for aerospace systems, land and marine transportation, civil infrastructures and other biological and mechanical applications. Guided waves (GWs) based inspections are an attractive mean for structural health monitoring. In this thesis, the study and development of techniques for GW ultrasound signal analysis and compression in the context of non-destructive testing of structures will be presented. In guided wave inspections, it is necessary to address the problem of the dispersion compensation. A signal processing approach based on frequency warping was adopted. Such operator maps the frequencies axis through a function derived by the group velocity of the test material and it is used to remove the dependence on the travelled distance from the acquired signals. Such processing strategy was fruitfully applied for impact location and damage localization tasks in composite and aluminum panels. It has been shown that, basing on this processing tool, low power embedded system for GW structural monitoring can be implemented. Finally, a new procedure based on Compressive Sensing has been developed and applied for data reduction. Such procedure has also a beneficial effect in enhancing the accuracy of structural defects localization. This algorithm uses the convolutive model of the propagation of ultrasonic guided waves which takes advantage of a sparse signal representation in the warped frequency domain. The recovery from the compressed samples is based on an alternating minimization procedure which achieves both an accurate reconstruction of the ultrasonic signal and a precise estimation of waves time of flight. Such information is used to feed hyperbolic or elliptic localization procedures, for accurate impact or damage localization.
Resumo:
We study automorphisms of irreducible holomorphic symplectic (IHS) manifolds deformation equivalent to the O’Grady’s sixfold. We classify non-symplectic and symplectic automorphisms using lattice theoretic criterions related to the lattice structure of the second integral cohomology. Moreover we introduce the concept of induced automorphisms. There are two birational models for O'Grady's sixfolds, the first one introduced by O'Grady, which is the resolution of singularities of the Albanese fiber of a moduli space of sheaves on an abelian surface, the second one which concerns in the quotient of an Hilbert cube by a symplectic involution. We find criterions to know when an automorphism is induced with respect to these two different models, i.e. it comes from an automorphism of the abelian surface or of the Hilbert cube.
Resumo:
The theory of numerical invariants for representations can be generalized to measurable cocycles. This provides a natural notion of maximality for cocycles associated to complex hyperbolic lattices with values in groups of Hermitian type. Among maximal cocycles, the class of Zariski dense ones turns out to have a rigid behavior. An alternative implementation of numerical invariants can be given by using equivariant maps at the level of boundaries and by exploiting the Burger-Monod approach to bounded cohomology. Due to their crucial role in this theory, we prove existence results in two different contexts. Precisely, we construct boundary maps for non-elementary cocycles into the isometry group of CAT(0)-spaces of finite telescopic dimension and for Zariski dense cocycles into simple Lie groups. Then we approach numerical invariants. Our first goal is to study cocycles from complex hyperbolic lattices into the Hermitian group SU(p,q). Following the theory recently developed by Moraschini and Savini, we define the Toledo invariant by using the pullback along cocycles, also by involving boundary maps. For cocycles Γ × X → SU(p,q) with 1
Resumo:
The aim of this Doctoral Thesis is the development of new catalytic synthetic methodologies in the context of the modern organic chemistry setting, with special focus on the use of cheap, sustainable catalytic materials. Specifically, during the course my PhD, I focused my research on two main distinct catalytic strategies, namely: the use of carbonaceous materials as catalysts (carbocatalysis) and nickel catalysis, also investigating a synergistic combination of the two. These methodologies were explored as means for the manipulation of (hetero)aromatic cores, representing ubiquitous, easily accessible and privileged scaffolds in medicinal or natural products chemistry. Both polar and radical reaction manifolds were engaged as complementary reactivities, capitalizing on metal- as well as organo-based activation modes. Particular attention has been devoted to addressing modern synthetic challenges or highly sought- after methodologies. Specifically, protocols for direct substitution of alcohols, dearomatization of arene nuclei, formation of C-S bonds, carbon dioxide fixation, C-C bond activation and fluoroalkylation were successfully achieved under carbo- or nickel catalyzed conditions.