3 resultados para Deformable Mirror

em AMS Tesi di Dottorato - Alm@DL - Università di Bologna


Relevância:

60.00% 60.00%

Publicador:

Resumo:

An Adaptive Optic (AO) system is a fundamental requirement of 8m-class telescopes. We know that in order to obtain the maximum possible resolution allowed by these telescopes we need to correct the atmospheric turbulence. Thanks to adaptive optic systems we are able to use all the effective potential of these instruments, drawing all the information from the universe sources as best as possible. In an AO system there are two main components: the wavefront sensor (WFS) that is able to measure the aberrations on the incoming wavefront in the telescope, and the deformable mirror (DM) that is able to assume a shape opposite to the one measured by the sensor. The two subsystem are connected by the reconstructor (REC). In order to do this, the REC requires a “common language" between these two main AO components. It means that it needs a mapping between the sensor-space and the mirror-space, called an interaction matrix (IM). Therefore, in order to operate correctly, an AO system has a main requirement: the measure of an IM in order to obtain a calibration of the whole AO system. The IM measurement is a 'mile stone' for an AO system and must be done regardless of the telescope size or class. Usually, this calibration step is done adding to the telescope system an auxiliary artificial source of light (i.e a fiber) that illuminates both the deformable mirror and the sensor, permitting the calibration of the AO system. For large telescope (more than 8m, like Extremely Large Telescopes, ELTs) the fiber based IM measurement requires challenging optical setups that in some cases are also impractical to build. In these cases, new techniques to measure the IM are needed. In this PhD work we want to check the possibility of a different method of calibration that can be applied directly on sky, at the telescope, without any auxiliary source. Such a technique can be used to calibrate AO system on a telescope of any size. We want to test the new calibration technique, called “sinusoidal modulation technique”, on the Large Binocular Telescope (LBT) AO system, which is already a complete AO system with the two main components: a secondary deformable mirror with by 672 actuators, and a pyramid wavefront sensor. My first phase of PhD work was helping to implement the WFS board (containing the pyramid sensor and all the auxiliary optical components) working both optical alignments and tests of some optical components. Thanks to the “solar tower” facility of the Astrophysical Observatory of Arcetri (Firenze), we have been able to reproduce an environment very similar to the telescope one, testing the main LBT AO components: the pyramid sensor and the secondary deformable mirror. Thanks to this the second phase of my PhD thesis: the measure of IM applying the sinusoidal modulation technique. At first we have measured the IM using a fiber auxiliary source to calibrate the system, without any kind of disturbance injected. After that, we have tried to use this calibration technique in order to measure the IM directly “on sky”, so adding an atmospheric disturbance to the AO system. The results obtained in this PhD work measuring the IM directly in the Arcetri solar tower system are crucial for the future development: the possibility of the acquisition of IM directly on sky means that we are able to calibrate an AO system also for extremely large telescope class where classic IM measurements technique are problematic and, sometimes, impossible. Finally we have not to forget the reason why we need this: the main aim is to observe the universe. Thanks to these new big class of telescopes and only using their full capabilities, we will be able to increase our knowledge of the universe objects observed, because we will be able to resolve more detailed characteristics, discovering, analyzing and understanding the behavior of the universe components.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

This work investigates the slamming phenomenon experienced during the water entry of deformable bodies. Wedges are chosen as reference geometry due to their similarity to a generic hull section. Hull slamming is a phenomenon occurring when a ship re-enters the water after having been partially or completely lifted out the water. While the analysis of rigid structures entering the water has been extensively studied in the past and there are analytical solutions capable of correctly predicting the hydrodynamic pressure distribution and the overall impact dynamics, the effect of the structural deformation on the structural force is still a challenging problem to be solved. In fact, in case of water impact of deformable bodies, the dynamic deflection could interact with the fluid flow, changing the hydrodynamic load. This work investigates the hull-slamming problem by experiments and numerical simulations of the water entry of elastic wedges impacting on an initially calm surface. The effect of asymmetry due to horizontal velocity component or initial tilt angle on the impact dynamics is also studied. The objective of this work is to determine an accurate model to predict the overall dynamics of the wedge and its deformations. More than 1200 experiments were conducted by varying wedge structural stiffness, deadrise angle, impact velocity and mass. On interest are the overall impact dynamics and the local structural deformation of the panels composing the wedge. Alongside with the experimental analysis, numerical simulations based on a coupled Smoothed Particle Hydrodynamics (SPH) and FEM method are developed. The experimental results provide evidence of the mutual interaction between hydrodynamic load and structural deformation. It is found a simple criterion for the onset of fluid structure interaction (FSI), giving reliable information on the cases where FSI should been taken into account.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

La tesi mira a ridefinire lo statuto del personaggio nell’ambito del self-conscious novel postmoderno, alla luce delle più recenti tendenze narratologiche, con particolare riferimento all’unnatural narratology. Per poter presentare un modello scientificamente valido si è fatto ricorso alla comparazione della produzione letteraria di due macro-aree: quella britannica e quella slava (Russia - Unione Sovietica - e Polonia). Come figura di mediazione tra queste due culture si pone senza dubbio Vladimir V. Nabokov, cardine e personalità di spicco della ricerca. Tra le analisi testuali proposte sono stati presi in considerazione i seguenti autori: Julian Barnes, Vladimir Nabokov, Daniil Charms, Konstantin Vaginov, Andrej Bitov, Saša Sokolov, Bruno Schulz e Tadeusz Kantor.