2 resultados para Defensin-like Peptide

em AMS Tesi di Dottorato - Alm@DL - Università di Bologna


Relevância:

90.00% 90.00%

Publicador:

Resumo:

Antimicrobial peptides (AMPs) are an important component of the innate immune system of the plants. Plant defensins are a large family of antimicrobial peptides with several interesting features, such as small dimension, high stability and broad spectrum of action. The discovery of new molecules and the study of their mechanism of action allow to consider them attractive for biotechnological applications. In this PhD thesis a defensin from Prunus persica (PpDFN1) and four novel DEFensin Like (DEFL) peptides from Vitis vinifera have been studied. In order to characterize the antimicrobial activity of these molecules, the recombinant mature peptides have been expressed in Escherichia coli and purified to homogeneity by chromatography techniques. PpDFN1 is able to inhibit the growth of B. cinerea, P. expansum and M. laxa with different intensity. The recombinant peptide is capable of membrane permeabilization as demonstrated by SYTOX green fluorescence uptake in treated mycelia. Its interaction with membranes containing sphingolipid species has been shown by artificial lipid monolayers. Furthermore, PpDFN1 displays stronger interaction with monolayers composed by lipids extracted from sensitive fungi with the highest interaction against P. expansum, the most sensitive fungi to PpDFN1 action. DEFL 13, a defensin from grapevine, resulted the strongest antibotrytis peptides. It is electrostatically attracted to the fungal membranes as shown by the antagonist effect of the cations and is able to membrane permeabilization in B. cinerea hyphae. DEFL 13 is internalized in fungal cells and leads to fungal death by activation of some signaling pathways as demonstrated by screening of a mutant collection of B. cinerea

Relevância:

30.00% 30.00%

Publicador:

Resumo:

In the contest of a modern green chemistry approach, we firstly tried to substituent the classic peptide synthesis approach with the use of N-carboxyanhydrides in the presence of Hydroxyapatite, a high biocompatible inorganic base. Despite the great results, further developments are necessary for a daily use in laboratory and for our research, we decided to proceed with solid phase or liquid phase synthesis. In the first chapter, the treatment of pain with the use of opioids is introduced. The abuse and misuse of these kind of potent analgesics, led to the necessity of developing new drugs with less side effects. Starting from a previous study, where the introduction of a lactam-like structure in the place of the proline of Endomorphine1, switched the selectivity from MOR to KOR, we designed and synthetized three different libraries by placing a different trans inducer element to gain the desired selectivity and activity forcing the structure to adopt a linear rather than folded position. In the second chapter, we focused on lactate dehydrogenase, an enzyme overexpressed when the cells in hypoxia conditions, like in a tumour mass, need to produce energy through the transformation of pyruvate into lactate. We synthetized different cyclic peptidomimetics, designed to be inhibitors, as powerful tool to contrast cancer cells growing. Biological assays produced satisfactory preliminary results, but further studies are necessary for a definitive output. Finally in the last chapter, the cancer treatment problem is also approached through the design of nanoparticles, able to deliver drugs with efficacy and selectivity. We firstly synthetized silica core nanoparticles, built with toxic peptide sequences conjugated through click chemistry with Pluronic acid and then, in collaboration with Miriam Royo’s research group, we synthetized multivalent platforms for used drugs for the treatment of advanced colorectal cancer.