6 resultados para Deep Brain-stimulation

em AMS Tesi di Dottorato - Alm@DL - Università di Bologna


Relevância:

100.00% 100.00%

Publicador:

Resumo:

The ventral premotor cortex (PMv) is believed to play a pivotal role in a multitude of visuomotor behaviors, such as sensory-guided goal-directed visuomotor transformations, arbitrary visuomotor mapping, and hyper-learnt visuomotor associations underlying automatic imitative tendencies. All these functions are likely carried out through the copious projections connecting PMv to the primary motor cortex (M1). Yet, causal evidence investigating the functional relevance of the PMv-M1 network remains elusive and scarce. In the studies reported in this thesis we addressed this issue using a transcranial magnetic stimulation (TMS) protocol called cortico-cortical paired associative stimulation (ccPAS), which relies on multisite stimulation to induce Hebbian spike-timing dependent plasticity (STDP) by repeatedly stimulating the pathway connecting two target areas to manipulate their connectivity. Firstly, we show that ccPAS protocols informed by both short- and long-latency PMv-M1 interactions effectively modulate connectivity between the two nodes. Then, by pre-activating the network to apply ccPAS in a state-dependent manner, we were able to selectively target specific functional visuo-motor pathways, demonstrating the relevance of PMv-M1 connectivity to arbitrary visuomotor mapping. Subsequently, we addressed the PMv-to-M1 role in automatic imitation, and demonstrated that its connectivity manipulation has a corresponding impact on automatic imitative tendencies. Finally, by combining dual-coil TMS connectivity assessments and ccPAS in young and elderly individuals, we traced effective connectivity of premotor-motor networks and tested their plasticity and relevance to manual dexterity and force in healthy ageing. Our findings provide unprecedent causal evidence of the functional role of the PMv-to-M1 network in young and elderly individuals. The studies presented in this thesis suggest that ccPAS can effectively modulate the strength of connectivity between targeted areas, and coherently manipulate a networks’ behavioral output. Results open new research prospects into the causal role of cortico-cortical connectivity, and provide necessary information to the development of clinical interventions based on connectivity manipulation.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Parkinson’s disease is a neurodegenerative disorder due to the death of the dopaminergic neurons of the substantia nigra of the basal ganglia. The process that leads to these neural alterations is still unknown. Parkinson’s disease affects most of all the motor sphere, with a wide array of impairment such as bradykinesia, akinesia, tremor, postural instability and singular phenomena such as freezing of gait. Moreover, in the last few years the fact that the degeneration in the basal ganglia circuitry induces not only motor but also cognitive alterations, not necessarily implicating dementia, and that dopamine loss induces also further implications due to dopamine-driven synaptic plasticity got more attention. At the present moment, no neuroprotective treatment is available, and even if dopamine-replacement therapies as well as electrical deep brain stimulation are able to improve the life conditions of the patients, they often present side effects on the long term, and cannot recover the neural loss, which instead continues to advance. In the present thesis both motor and cognitive aspects of Parkinson’s disease and basal ganglia circuitry were investigated, at first focusing on Parkinson’s disease sensory and balance issues by means of a new instrumented method based on inertial sensor to provide further information about postural control and postural strategies used to attain balance, then applying this newly developed approach to assess balance control in mild and severe patients, both ON and OFF levodopa replacement. Given the inability of levodopa to recover balance issues and the new physiological findings than underline the importance in Parkinson’s disease of non-dopaminergic neurotransmitters, it was therefore developed an original computational model focusing on acetylcholine, the most promising neurotransmitter according to physiology, and its role in synaptic plasticity. The rationale of this thesis is that a multidisciplinary approach could gain insight into Parkinson’s disease features still unresolved.

Relevância:

90.00% 90.00%

Publicador:

Resumo:

Fear conditioning represents the learning process by which a stimulus, after repeated pairing with an aversive event, comes to evoke fear and becomes intrinsically aversive. This learning is essential to organisms throughout the animal kingdom and represents one the most successful laboratory paradigm to reveal the psychological processes that govern the expression of emotional memory and explore its neurobiological underpinnings. Although a large amount of research has been conducted on the behavioural or neural correlates of fear conditioning, some key questions remain unanswered. Accordingly, this thesis aims to respond to some unsolved theoretic and methodological issues, thus furthering our understanding of the neurofunctional basis of human fear conditioning both in healthy and brain-damaged individuals. Specifically, in this thesis, behavioural, psychophysiological, lesion and non-invasive brain stimulation studies were reported. Study 1 examined the influence of normal aging on context-dependent recall of extinction of fear conditioned stimulus. Study 2 aimed to determine the causal role of the ventromedial PFC (vmPFC) in the acquisition of fear conditioning by systematically test the effect of bilateral vmPFC brain-lesion. Study 3 aimed to interfere with the reconsolidation process of fear memory by the means of non-invasive brain stimulation (i.e. TMS) disrupting PFC neural activity. Finally, Study 4 aimed to investigate whether the parasympathetic – vagal – modulation of heart rate might reflect the anticipation of fearful, as compared to neutral, events during classical fear conditioning paradigm. Evidence reported in this PhD thesis might therefore provide key insights and deeper understanding of critical issues concerning the neurofunctional mechanisms underlying the acquisition, the extinction and the reconsolidation of fear memories in humans.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

This thesis aimed at addressing some of the issues that, at the state of the art, avoid the P300-based brain computer interface (BCI) systems to move from research laboratories to end users’ home. An innovative asynchronous classifier has been defined and validated. It relies on the introduction of a set of thresholds in the classifier, and such thresholds have been assessed considering the distributions of score values relating to target, non-target stimuli and epochs of voluntary no-control. With the asynchronous classifier, a P300-based BCI system can adapt its speed to the current state of the user and can automatically suspend the control when the user diverts his attention from the stimulation interface. Since EEG signals are non-stationary and show inherent variability, in order to make long-term use of BCI possible, it is important to track changes in ongoing EEG activity and to adapt BCI model parameters accordingly. To this aim, the asynchronous classifier has been subsequently improved by introducing a self-calibration algorithm for the continuous and unsupervised recalibration of the subjective control parameters. Finally an index for the online monitoring of the EEG quality has been defined and validated in order to detect potential problems and system failures. This thesis ends with the description of a translational work involving end users (people with amyotrophic lateral sclerosis-ALS). Focusing on the concepts of the user centered design approach, the phases relating to the design, the development and the validation of an innovative assistive device have been described. The proposed assistive technology (AT) has been specifically designed to meet the needs of people with ALS during the different phases of the disease (i.e. the degree of motor abilities impairment). Indeed, the AT can be accessed with several input devices either conventional (mouse, touchscreen) or alterative (switches, headtracker) up to a P300-based BCI.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

This thesis regards the study and the development of new cognitive assessment and rehabilitation techniques of subjects with traumatic brain injury (TBI). In particular, this thesis i) provides an overview about the state of art of this new assessment and rehabilitation technologies, ii) suggests new methods for the assessment and rehabilitation and iii) contributes to the explanation of the neurophysiological mechanism that is involved in a rehabilitation treatment. Some chapters provide useful information to contextualize TBI and its outcome; they describe the methods used for its assessment/rehabilitation. The other chapters illustrate a series of experimental studies conducted in healthy subjects and TBI patients that suggest new approaches to assessment and rehabilitation. The new proposed approaches have in common the use of electroencefalografy (EEG). EEG was used in all the experimental studies with a different purpose, such as diagnostic tool, signal to command a BCI-system, outcome measure to evaluate the effects of a treatment, etc. The main achieved results are about: i) the study and the development of a system for the communication with patients with disorders of consciousness. It was possible to identify a paradigm of reliable activation during two imagery task using EEG signal or EEG and NIRS signal; ii) the study of the effects of a neuromodulation technique (tDCS) on EEG pattern. This topic is of great importance and interest. The emerged founding showed that the tDCS can manipulate the cortical network activity and through the research of optimal stimulation parameters, it is possible move the working point of a neural network and bring it in a condition of maximum learning. In this way could be possible improved the performance of a BCI system or to improve the efficacy of a rehabilitation treatment, like neurofeedback.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Deep learning methods are extremely promising machine learning tools to analyze neuroimaging data. However, their potential use in clinical settings is limited because of the existing challenges of applying these methods to neuroimaging data. In this study, first a data leakage type caused by slice-level data split that is introduced during training and validation of a 2D CNN is surveyed and a quantitative assessment of the model’s performance overestimation is presented. Second, an interpretable, leakage-fee deep learning software written in a python language with a wide range of options has been developed to conduct both classification and regression analysis. The software was applied to the study of mild cognitive impairment (MCI) in patients with small vessel disease (SVD) using multi-parametric MRI data where the cognitive performance of 58 patients measured by five neuropsychological tests is predicted using a multi-input CNN model taking brain image and demographic data. Each of the cognitive test scores was predicted using different MRI-derived features. As MCI due to SVD has been hypothesized to be the effect of white matter damage, DTI-derived features MD and FA produced the best prediction outcome of the TMT-A score which is consistent with the existing literature. In a second study, an interpretable deep learning system aimed at 1) classifying Alzheimer disease and healthy subjects 2) examining the neural correlates of the disease that causes a cognitive decline in AD patients using CNN visualization tools and 3) highlighting the potential of interpretability techniques to capture a biased deep learning model is developed. Structural magnetic resonance imaging (MRI) data of 200 subjects was used by the proposed CNN model which was trained using a transfer learning-based approach producing a balanced accuracy of 71.6%. Brain regions in the frontal and parietal lobe showing the cerebral cortex atrophy were highlighted by the visualization tools.