5 resultados para Decision Quality
em AMS Tesi di Dottorato - Alm@DL - Università di Bologna
Resumo:
The general objective of this research is to explore theories and methodologies of sustainability indicators, environmental management and decision making disciplines with the operational purpose of producing scientific, robust and relevant information for supporting system understanding and decision making in real case studies. Several tools have been applied in order to increase the understanding of socio-ecological systems as well as providing relevant information on the choice between alternatives. These tools have always been applied having in mind the complexity of the issues and the uncertainty tied to the partial knowledge of the systems under study. Two case studies with specific application to performances measurement (environmental performances in the case of the K8 approach and sustainable development performances in the case of the EU Sustainable Development Strategy) and a case study about the selection of sustainable development indicators amongst Municipalities in Scotland, are discussed in the first part of the work. In the second part of the work, the common denominator among subjects consists in the application of spatial indices and indicators to address operational problems in land use management within the territory of the Ravenna province (Italy). The main conclusion of the thesis is that a ‘perfect’ methodological approach which always produces the best results in assessing sustainability performances does not exist. Rather, there is a pool of correct approaches answering different evaluation questions, to be used when methodologies fit the purpose of the analysis. For this reason, methodological limits and conceptual assumptions as well as consistency and transparency of the assessment, become the key factors for assessing the quality of the analysis.
Resumo:
Landslide hazard and risk are growing as a consequence of climate change and demographic pressure. Land‐use planning represents a powerful tool to manage this socio‐economic problem and build sustainable and landslide resilient communities. Landslide inventory maps are a cornerstone of land‐use planning and, consequently, their quality assessment represents a burning issue. This work aimed to define the quality parameters of a landslide inventory and assess its spatial and temporal accuracy with regard to its possible applications to land‐use planning. In this sense, I proceeded according to a two‐steps approach. An overall assessment of the accuracy of data geographic positioning was performed on four case study sites located in the Italian Northern Apennines. The quantification of the overall spatial and temporal accuracy, instead, focused on the Dorgola Valley (Province of Reggio Emilia). The assessment of spatial accuracy involved a comparison between remotely sensed and field survey data, as well as an innovative fuzzylike analysis of a multi‐temporal landslide inventory map. Conversely, long‐ and short‐term landslide temporal persistence was appraised over a period of 60 years with the aid of 18 remotely sensed image sets. These results were eventually compared with the current Territorial Plan for Provincial Coordination (PTCP) of the Province of Reggio Emilia. The outcome of this work suggested that geomorphologically detected and mapped landslides are a significant approximation of a more complex reality. In order to convey to the end‐users this intrinsic uncertainty, a new form of cartographic representation is needed. In this sense, a fuzzy raster landslide map may be an option. With regard to land‐use planning, landslide inventory maps, if appropriately updated, confirmed to be essential decision‐support tools. This research, however, proved that their spatial and temporal uncertainty discourages any direct use as zoning maps, especially when zoning itself is associated to statutory or advisory regulations.
Resumo:
In the last decades, global food supply chains had to deal with the increasing awareness of the stakeholders and consumers about safety, quality, and sustainability. In order to address these new challenges for food supply chain systems, an integrated approach to design, control, and optimize product life cycle is required. Therefore, it is essential to introduce new models, methods, and decision-support platforms tailored to perishable products. This thesis aims to provide novel practice-ready decision-support models and methods to optimize the logistics of food items with an integrated and interdisciplinary approach. It proposes a comprehensive review of the main peculiarities of perishable products and the environmental stresses accelerating their quality decay. Then, it focuses on top-down strategies to optimize the supply chain system from the strategical to the operational decision level. Based on the criticality of the environmental conditions, the dissertation evaluates the main long-term logistics investment strategies to preserve products quality. Several models and methods are proposed to optimize the logistics decisions to enhance the sustainability of the supply chain system while guaranteeing adequate food preservation. The models and methods proposed in this dissertation promote a climate-driven approach integrating climate conditions and their consequences on the quality decay of products in innovative models supporting the logistics decisions. Given the uncertain nature of the environmental stresses affecting the product life cycle, an original stochastic model and solving method are proposed to support practitioners in controlling and optimizing the supply chain systems when facing uncertain scenarios. The application of the proposed decision-support methods to real case studies proved their effectiveness in increasing the sustainability of the perishable product life cycle. The dissertation also presents an industry application of a global food supply chain system, further demonstrating how the proposed models and tools can be integrated to provide significant savings and sustainability improvements.
Resumo:
Air pollution is one of the greatest health risks in the world. At the same time, the strong correlation with climate change, as well as with Urban Heat Island and Heat Waves, make more intense the effects of all these phenomena. A good air quality and high levels of thermal comfort are the big goals to be reached in urban areas in coming years. Air quality forecast help decision makers to improve air quality and public health strategies, mitigating the occurrence of acute air pollution episodes. Air quality forecasting approaches combine an ensemble of models to provide forecasts from global to regional air pollution and downscaling for selected countries and regions. The development of models dedicated to urban air quality issues requires a good set of data regarding the urban morphology and building material characteristics. Only few examples of air quality forecast system at urban scale exist in the literature and often they are limited to selected cities. This thesis develops by setting up a methodology for the development of a forecasting tool. The forecasting tool can be adapted to all cities and uses a new parametrization for vegetated areas. The parametrization method, based on aerodynamic parameters, produce the urban spatially varying roughness. At the core of the forecasting tool there is a dispersion model (urban scale) used in forecasting mode, and the meteorological and background concentration forecasts provided by two regional numerical weather forecasting models. The tool produces the 1-day spatial forecast of NO2, PM10, O3 concentration, the air temperature, the air humidity and BLQ-Air index values. The tool is automatized to run every day, the maps produced are displayed on the e-Globus platform, updated every day. The results obtained indicate that the forecasting output were in good agreement with the observed measurements.
Resumo:
Fruit crops are an important resource for food security, since more than being nutrient they are also a source of natural antioxidant compounds, such as polyphenols and vitamins. However, fruit crops are also among the cultivations threatened by the harmful effects of climate change This study had the objective of investigating the physiological effects of deficit irrigation on apple (2020-2021), sour cherry (2020-2021-2022) and apricot (2021-2022) trees, with a special focus on fruit nutraceutical quality. On each trial, the main physiological parameters were monitored along the growing season: i) stem and leaf water potentials; ii) leaf gas exchanges; iii) fruit and shoot growth. At harvest, fruit quality was evaluated especially in terms of fruit size, flesh firmness and soluble solids content. Moreover, it was performed: i) total phenolic content determination; ii) anthocyanidin concentration evaluation; and iii) untargeted metabolomic study. Irrigation scheduling in apricot, apple and sour cherry is surely overestimated by the decision support system available in Emilia-Romagna region. The water stress imposed on different fruit crops, each during two years of study, showed as a general conclusion that the decrease in the irrigation water did not show a straightforward decrease in plant physiological performance. This can be due to the miscalculation of the real water needs of the considered fruit crops. For this reason, there is the need to improve this important tool for an appropriate water irrigation management. Furthermore, there is also the need to study the behaviour of fruit crops under more severe deficit irrigations. In fact, it is likely that the application of lower water amounts will enhance the synthesis of specialized metabolites, with positive repercussion on human health. These hypotheses must be verified.