5 resultados para Data treatment
em AMS Tesi di Dottorato - Alm@DL - Università di Bologna
Resumo:
The aspartic protease BACE1 (β-amyloid precursor protein cleaving enzyme, β-secretase) is recognized as one of the most promising targets in the treatment of Alzheimer's disease (AD). The accumulation of β-amyloid peptide (Aβ) in the brain is a major factor in the pathogenesis of AD. Aβ is formed by initial cleavage of β-amyloid precursor protein (APP) by β-secretase, therefore BACE1 inhibition represents one of the therapeutic approaches to control progression of AD, by preventing the abnormal generation of Aβ. For this reason, in the last decade, many research efforts have focused at the identification of new BACE1 inhibitors as drug candidates. Generally, BACE1 inhibitors are grouped into two families: substrate-based inhibitors, designed as peptidomimetic inhibitors, and non-peptidomimetic ones. The research on non-peptidomimetic small molecules BACE1 inhibitors remains the most interesting approach, since these compounds hold an improved bioavailability after systemic administration, due to a good blood-brain barrier permeability in comparison to peptidomimetic inhibitors. Very recently, our research group discovered a new promising lead compound for the treatment of AD, named lipocrine, a hybrid derivative between lipoic acid and the AChE inhibitor (AChEI) tacrine, characterized by a tetrahydroacridinic moiety. Lipocrine is one of the first compounds able to inhibit the catalytic activity of AChE and AChE-induced amyloid-β aggregation and to protect against reactive oxygen species. Due to this interesting profile, lipocrine was also evaluated for BACE1 inhibitory activity, resulting in a potent lead compound for BACE1 inhibition. Starting from this interesting profile, a series of tetrahydroacridine analogues were synthesised varying the chain length between the two fragments. Moreover, following the approach of combining in a single molecule two different pharmacophores, we designed and synthesised different compounds bearing the moieties of known AChEIs (rivastigmine and caproctamine) coupled with lipoic acid, since it was shown that dithiolane group is an important structural feature of lipocrine for the optimal inhibition of BACE1. All the tetrahydroacridines, rivastigmine and caproctamine-based compounds, were evaluated for BACE1 inhibitory activity in a FRET (fluorescence resonance energy transfer) enzymatic assay (test A). With the aim to enhancing the biological activity of the lead compound, we applied the molecular simplification approach to design and synthesize novel heterocyclic compounds related to lipocrine, in which the tetrahydroacridine moiety was replaced by 4-amino-quinoline or 4-amino-quinazoline rings. All the synthesized compounds were also evaluated in a modified FRET enzymatic assay (test B), changing the fluorescent substrate for enzymatic BACE1 cleavage. This test method guided deep structure-activity relationships for BACE1 inhibition on the most promising quinazoline-based derivatives. By varying the substituent on the 2-position of the quinazoline ring and by replacing the lipoic acid residue in lateral chain with different moieties (i.e. trans-ferulic acid, a known antioxidant molecule), a series of quinazoline derivatives were obtained. In order to confirm inhibitory activity of the most active compounds, they were evaluated with a third FRET assay (test C) which, surprisingly, did not confirm the previous good activity profiles. An evaluation study of kinetic parameters of the three assays revealed that method C is endowed with the best specificity and enzymatic efficiency. Biological evaluation of the modified 2,4-diamino-quinazoline derivatives measured through the method C, allow to obtain a new lead compound bearing the trans-ferulic acid residue coupled to 2,4-diamino-quinazoline core endowed with a good BACE1 inhibitory activity (IC50 = 0.8 mM). We reported on the variability of the results in the three different FRET assays that are known to have some disadvantages in term of interference rates that are strongly dependent on compound properties. The observed results variability could be also ascribed to different enzyme origin, varied substrate and different fluorescent groups. The inhibitors should be tested on a parallel screening in order to have a more reliable data prior to be tested into cellular assay. With this aim, preliminary cellular BACE1 inhibition assay carried out on lipocrine confirmed a good cellular activity profile (EC50 = 3.7 mM) strengthening the idea to find a small molecule non-peptidomimetic compound as BACE1 inhibitor. In conclusion, the present study allowed to identify a new lead compound endowed with BACE1 inhibitory activity in submicromolar range. Further lead optimization to the obtained derivative is needed in order to obtain a more potent and a selective BACE1 inhibitor based on 2,4-diamino-quinazoline scaffold. A side project related to the synthesis of novel enzymatic inhibitors of BACE1 in order to explore the pseudopeptidic transition-state isosteres chemistry was carried out during research stage at Università de Montrèal (Canada) in Hanessian's group. The aim of this work has been the synthesis of the δ-aminocyclohexane carboxylic acid motif with stereochemically defined substitution to incorporating such a constrained core in potential BACE1 inhibitors. This fragment, endowed with reduced peptidic character, is not known in the context of peptidomimetic design. In particular, we envisioned an alternative route based on an organocatalytic asymmetric conjugate addition of nitroalkanes to cyclohexenone in presence of D-proline and trans-2,5-dimethylpiperazine. The enantioenriched obtained 3-(α-nitroalkyl)-cyclohexanones were further functionalized to give the corresponding δ-nitroalkyl cyclohexane carboxylic acids. These intermediates were elaborated to the target structures 3-(α-aminoalkyl)-1-cyclohexane carboxylic acids in a new readily accessible way.
Resumo:
The Gaia space mission is a major project for the European astronomical community. As challenging as it is, the processing and analysis of the huge data-flow incoming from Gaia is the subject of thorough study and preparatory work by the DPAC (Data Processing and Analysis Consortium), in charge of all aspects of the Gaia data reduction. This PhD Thesis was carried out in the framework of the DPAC, within the team based in Bologna. The task of the Bologna team is to define the calibration model and to build a grid of spectro-photometric standard stars (SPSS) suitable for the absolute flux calibration of the Gaia G-band photometry and the BP/RP spectrophotometry. Such a flux calibration can be performed by repeatedly observing each SPSS during the life-time of the Gaia mission and by comparing the observed Gaia spectra to the spectra obtained by our ground-based observations. Due to both the different observing sites involved and the huge amount of frames expected (≃100000), it is essential to maintain the maximum homogeneity in data quality, acquisition and treatment, and a particular care has to be used to test the capabilities of each telescope/instrument combination (through the “instrument familiarization plan”), to devise methods to keep under control, and eventually to correct for, the typical instrumental effects that can affect the high precision required for the Gaia SPSS grid (a few % with respect to Vega). I contributed to the ground-based survey of Gaia SPSS in many respects: with the observations, the instrument familiarization plan, the data reduction and analysis activities (both photometry and spectroscopy), and to the maintenance of the data archives. However, the field I was personally responsible for was photometry and in particular relative photometry for the production of short-term light curves. In this context I defined and tested a semi-automated pipeline which allows for the pre-reduction of imaging SPSS data and the production of aperture photometry catalogues ready to be used for further analysis. A series of semi-automated quality control criteria are included in the pipeline at various levels, from pre-reduction, to aperture photometry, to light curves production and analysis.
Resumo:
Introduction Lower pole kidney stones represent at time a challenge for the urologist. The gold standard treatment for intrarenal stones <2 cm is Extracorporeal Shock Wave Lithotripsy (ESWL) while for those >2 cm is Percutaneous Nephrolithotomy (PCNL). The success rate of ESWL, however, decreases when it is employed for lower pole stones, and this is particularly true in the presence of narrow calices or acute infundibular angles. Studies have proved that ureteroscopy (URS) is an efficacious alternative to ESWL for lower pole stones <2 cm, but this is not reflected by either the European or the American guidelines. The aim of this study is to present the results of a large series of flexible ureteroscopies and PCNLs for lower pole kidney stones from high-volume centers, in order to provide more evidences on the potential indications of the flexible ureteroscopy for the treatment of kidney stones. Materials and Methods A database was created and the participating centres retrospectively entered their data relating to the percutaneous and flexible ureteroscopic management of lower pole kidney stones. Patients included were treated between January 2005 and January 2010. Variables analyzed included case load number, preoperative and postoperative imaging, stone burden, anaesthesia (general vs. spinal), type of lithotripter, access location and size, access dilation type, ureteral access sheath use, visual clarity, operative time, stone-free rate, complication rate, hospital stay, analgesic requirement and follow-up time. Stone-free rate was defined as absence of residual fragments or presence of a single fragment <2 mm in size at follow-up imaging. Primary end-point was to test the efficacy and safety of flexible URS for the treatment of lower pole stones; the same descriptive analysis was conducted for the PCNL approach, as considered the gold standard for the treatment of lower pole kidney stones. In this setting, no statistical analysis was conducted owing to the different selection criteria of the patients. Secondary end-point consisted in matching the results of stone-free rates, operative time and complications rate of flexible URS and PCNL in the subgroup of patients harbouring lower pole kidney stones between 1 and 2 cm in the higher diameter. Results A total 246 patients met the criteria for inclusion. There were 117 PCNLs (group 1) and 129 flexible URS (group 2). Ninety-six percent of cases were diagnosed by CT KUB scan. Mean stone burden was 175±160 and 50±62 mm2 for groups 1 and 2, respectively. General anaesthesia was induced in 100 % and 80% of groups 1 and 2, respectively. Pneumo-ultrasonic energy was used in 84% of cases in the PCNL group, and holmium laser in 95% of the cases in the flexible URS group. The mean operative time was 76.9±44 and 63±37 minutes for groups 1 and 2 respectively. There were 12 major complications (11%) in group 1 (mainly Grade II complications according to Clavidien classification) and no major complications in group 2. Mean hospital stay was 5.7 and 2.6 days for groups 1 and 2, respectively. Ninety-five percent of group 1 and 52% of group 2 required analgesia for a period longer than 24 hours. Intraoperative stone-free rate after a single treatment was 88.9% for group 1 and 79.1% for group 2. Overall, 6% of group 1 and 14.7% of group 2 required a second look procedure. At 3 months, stone-free rates were 90.6% and 92.2% for groups 1 and 2, respectively, as documented by follow-up CT KUB (22%) or combination of intra-venous pyelogram, regular KUB and/or kidney ultrasound (78%). In the subanalysis conducted comparing 82 vs 65 patients who underwent PCNL and flexible URS for lower pole stones between 1 and 2 cm, intreoperative stone-free rates were 88% vs 68% (p= 0.03), respectively; anyway, after an auxiliary procedure which was necessary in 6% of the cases in group 1 and 23% in group 2 (p=0.03), stone-free rates at 3 months were not statistically significant (91.5% vs 89.2%; p=0.6). Conversely, the patients undergoing PCNL maintained a higher risk of complications during the procedure, with 9 cases observed in this group versus 0 in the group of patients treated with URS (p=0.01) Conclusions These data highlight the value of flexible URS as a very effective and safe option for the treatment of kidney stones; thanks to the latest generation of flexible devices, this new technical approach seems to be a valid alternative in particular for the treatment of lower pole kidney stones less than 2 cm. In high-volume centres and in the hands of skilled surgeons, this technique can approach the stone-free rates achievable through PCNL in lower pole stones between 1 and 2 cm, with a very low risk of complications. Furthermore, the results confirm the high success rate and relatively low morbidity of modern PCNL for lower pole stones, with no difference detectable between the prone and supine position.
Resumo:
Waste management represents an important issue in our society and Waste-to-Energy incineration plants have been playing a significant role in the last decades, showing an increased importance in Europe. One of the main issues posed by waste combustion is the generation of air contaminants. Particular concern is present about acid gases, mainly hydrogen chloride and sulfur oxides, due to their potential impact on the environment and on human health. Therefore, in the present study the main available technological options for flue gas treatment were analyzed, focusing on dry treatment systems, which are increasingly applied in Municipal Solid Wastes (MSW) incinerators. An operational model was proposed to describe and optimize acid gas removal process. It was applied to an existing MSW incineration plant, where acid gases are neutralized in a two-stage dry treatment system. This process is based on the injection of powdered calcium hydroxide and sodium bicarbonate in reactors followed by fabric filters. HCl and SO2 conversions were expressed as a function of reactants flow rates, calculating model parameters from literature and plant data. The implementation in a software for process simulation allowed the identification of optimal operating conditions, taking into account the reactant feed rates, the amount of solid products and the recycle of the sorbent. Alternative configurations of the reference plant were also assessed. The applicability of the operational model was extended developing also a fundamental approach to the issue. A predictive model was developed, describing mass transfer and kinetic phenomena governing the acid gas neutralization with solid sorbents. The rate controlling steps were identified through the reproduction of literature data, allowing the description of acid gas removal in the case study analyzed. A laboratory device was also designed and started up to assess the required model parameters.
Resumo:
This thesis will focus on the residual function and visual and attentional deficits in human patients, which accompany damage to the visual cortex or its thalamic afferents, and plastic changes, which follow it. In particular, I will focus on homonymous visual field defects, which comprise a broad set of central disorders of vision. I will present experimental evidence that when the primary visual pathway is completely damaged, the only signal that can be implicitly processed via subcortical visual networks is fear. I will also present data showing that in a patient with relative deafferentation of visual cortex, changes in the spatial tuning and response gain of the contralesional and ipsilesional cortex are observed, which are accompanied by changes in functional connectivity with regions belonging to the dorsal attentional network and the default mode network. I will also discuss how cortical plasticity might be harnessed to improve recovery through novel treatments. Moreover, I will show how treatment interventions aimed at recruiting spared subcortical pathway supporting multisensory orienting can drive network level change.