17 resultados para Data distribution
em AMS Tesi di Dottorato - Alm@DL - Università di Bologna
Resumo:
The continuous advancements and enhancements of wireless systems are enabling new compelling scenarios where mobile services can adapt according to the current execution context, represented by the computational resources available at the local device, current physical location, people in physical proximity, and so forth. Such services called context-aware require the timely delivery of all relevant information describing the current context, and that introduces several unsolved complexities, spanning from low-level context data transmission up to context data storage and replication into the mobile system. In addition, to ensure correct and scalable context provisioning, it is crucial to integrate and interoperate with different wireless technologies (WiFi, Bluetooth, etc.) and modes (infrastructure-based and ad-hoc), and to use decentralized solutions to store and replicate context data on mobile devices. These challenges call for novel middleware solutions, here called Context Data Distribution Infrastructures (CDDIs), capable of delivering relevant context data to mobile devices, while hiding all the issues introduced by data distribution in heterogeneous and large-scale mobile settings. This dissertation thoroughly analyzes CDDIs for mobile systems, with the main goal of achieving a holistic approach to the design of such type of middleware solutions. We discuss the main functions needed by context data distribution in large mobile systems, and we claim the precise definition and clean respect of quality-based contracts between context consumers and CDDI to reconfigure main middleware components at runtime. We present the design and the implementation of our proposals, both in simulation-based and in real-world scenarios, along with an extensive evaluation that confirms the technical soundness of proposed CDDI solutions. Finally, we consider three highly heterogeneous scenarios, namely disaster areas, smart campuses, and smart cities, to better remark the wide technical validity of our analysis and solutions under different network deployments and quality constraints.
Resumo:
Many research fields are pushing the engineering of large-scale, mobile, and open systems towards the adoption of techniques inspired by self-organisation: pervasive computing, but also distributed artificial intelligence, multi-agent systems, social networks, peer-topeer and grid architectures exploit adaptive techniques to make global system properties emerge in spite of the unpredictability of interactions and behaviour. Such a trend is visible also in coordination models and languages, whenever a coordination infrastructure needs to cope with managing interactions in highly dynamic and unpredictable environments. As a consequence, self-organisation can be regarded as a feasible metaphor to define a radically new conceptual coordination framework. The resulting framework defines a novel coordination paradigm, called self-organising coordination, based on the idea of spreading coordination media over the network, and charge them with services to manage interactions based on local criteria, resulting in the emergence of desired and fruitful global coordination properties of the system. Features like topology, locality, time-reactiveness, and stochastic behaviour play a key role in both the definition of such a conceptual framework and the consequent development of self-organising coordination services. According to this framework, the thesis presents several self-organising coordination techniques developed during the PhD course, mainly concerning data distribution in tuplespace-based coordination systems. Some of these techniques have been also implemented in ReSpecT, a coordination language for tuple spaces, based on logic tuples and reactions to events occurring in a tuple space. In addition, the key role played by simulation and formal verification has been investigated, leading to analysing how automatic verification techniques like probabilistic model checking can be exploited in order to formally prove the emergence of desired behaviours when dealing with coordination approaches based on self-organisation. To this end, a concrete case study is presented and discussed.
Resumo:
The wide diffusion of cheap, small, and portable sensors integrated in an unprecedented large variety of devices and the availability of almost ubiquitous Internet connectivity make it possible to collect an unprecedented amount of real time information about the environment we live in. These data streams, if properly and timely analyzed, can be exploited to build new intelligent and pervasive services that have the potential of improving people's quality of life in a variety of cross concerning domains such as entertainment, health-care, or energy management. The large heterogeneity of application domains, however, calls for a middleware-level infrastructure that can effectively support their different quality requirements. In this thesis we study the challenges related to the provisioning of differentiated quality-of-service (QoS) during the processing of data streams produced in pervasive environments. We analyze the trade-offs between guaranteed quality, cost, and scalability in streams distribution and processing by surveying existing state-of-the-art solutions and identifying and exploring their weaknesses. We propose an original model for QoS-centric distributed stream processing in data centers and we present Quasit, its prototype implementation offering a scalable and extensible platform that can be used by researchers to implement and validate novel QoS-enforcement mechanisms. To support our study, we also explore an original class of weaker quality guarantees that can reduce costs when application semantics do not require strict quality enforcement. We validate the effectiveness of this idea in a practical use-case scenario that investigates partial fault-tolerance policies in stream processing by performing a large experimental study on the prototype of our novel LAAR dynamic replication technique. Our modeling, prototyping, and experimental work demonstrates that, by providing data distribution and processing middleware with application-level knowledge of the different quality requirements associated to different pervasive data flows, it is possible to improve system scalability while reducing costs.
Resumo:
The Ecosystem Approach to Fisheries represents the most recent research line in the international context, showing interest both towards the whole community and toward the identification and protection of all the “critical habitats” in which marine resources complete their life cycles. Using data coming from trawl surveys performed in the Northern and Central Adriatic from 1996 to 2010, this study provides the first attempt to appraise the status of the whole demersal community. It took into account not only fishery target species but also by-catch and discharge species by the use of a suite of biological indicators both at population and multi-specific level, allowing to have a global picture of the status of the demersal system. This study underlined the decline of extremely important species for the Adriatic fishery in recent years; adverse impact on catches is expected for these species in the coming years, since also minimum values of recruits recently were recorded. Both the excessive exploitation and environmental factors affected availability of resources. Moreover both distribution and nursery areas of the most important resources were pinpointed by means of geostatistical methods. The geospatial analysis also confirmed the presence of relevant recruitment areas in the North and Central Adriatic for several commercial species, as reported in the literature. The morphological and oceanographic features, the relevant rivers inflow together with the mosaic pattern of biocenoses with different food availability affected the location of the observed relevant nursery areas.
Resumo:
In the past decade, the advent of efficient genome sequencing tools and high-throughput experimental biotechnology has lead to enormous progress in the life science. Among the most important innovations is the microarray tecnology. It allows to quantify the expression for thousands of genes simultaneously by measurin the hybridization from a tissue of interest to probes on a small glass or plastic slide. The characteristics of these data include a fair amount of random noise, a predictor dimension in the thousand, and a sample noise in the dozens. One of the most exciting areas to which microarray technology has been applied is the challenge of deciphering complex disease such as cancer. In these studies, samples are taken from two or more groups of individuals with heterogeneous phenotypes, pathologies, or clinical outcomes. these samples are hybridized to microarrays in an effort to find a small number of genes which are strongly correlated with the group of individuals. Eventhough today methods to analyse the data are welle developed and close to reach a standard organization (through the effort of preposed International project like Microarray Gene Expression Data -MGED- Society [1]) it is not unfrequant to stumble in a clinician's question that do not have a compelling statistical method that could permit to answer it.The contribution of this dissertation in deciphering disease regards the development of new approaches aiming at handle open problems posed by clinicians in handle specific experimental designs. In Chapter 1 starting from a biological necessary introduction, we revise the microarray tecnologies and all the important steps that involve an experiment from the production of the array, to the quality controls ending with preprocessing steps that will be used into the data analysis in the rest of the dissertation. While in Chapter 2 a critical review of standard analysis methods are provided stressing most of problems that In Chapter 3 is introduced a method to adress the issue of unbalanced design of miacroarray experiments. In microarray experiments, experimental design is a crucial starting-point for obtaining reasonable results. In a two-class problem, an equal or similar number of samples it should be collected between the two classes. However in some cases, e.g. rare pathologies, the approach to be taken is less evident. We propose to address this issue by applying a modified version of SAM [2]. MultiSAM consists in a reiterated application of a SAM analysis, comparing the less populated class (LPC) with 1,000 random samplings of the same size from the more populated class (MPC) A list of the differentially expressed genes is generated for each SAM application. After 1,000 reiterations, each single probe given a "score" ranging from 0 to 1,000 based on its recurrence in the 1,000 lists as differentially expressed. The performance of MultiSAM was compared to the performance of SAM and LIMMA [3] over two simulated data sets via beta and exponential distribution. The results of all three algorithms over low- noise data sets seems acceptable However, on a real unbalanced two-channel data set reagardin Chronic Lymphocitic Leukemia, LIMMA finds no significant probe, SAM finds 23 significantly changed probes but cannot separate the two classes, while MultiSAM finds 122 probes with score >300 and separates the data into two clusters by hierarchical clustering. We also report extra-assay validation in terms of differentially expressed genes Although standard algorithms perform well over low-noise simulated data sets, multi-SAM seems to be the only one able to reveal subtle differences in gene expression profiles on real unbalanced data. In Chapter 4 a method to adress similarities evaluation in a three-class prblem by means of Relevance Vector Machine [4] is described. In fact, looking at microarray data in a prognostic and diagnostic clinical framework, not only differences could have a crucial role. In some cases similarities can give useful and, sometimes even more, important information. The goal, given three classes, could be to establish, with a certain level of confidence, if the third one is similar to the first or the second one. In this work we show that Relevance Vector Machine (RVM) [2] could be a possible solutions to the limitation of standard supervised classification. In fact, RVM offers many advantages compared, for example, with his well-known precursor (Support Vector Machine - SVM [3]). Among these advantages, the estimate of posterior probability of class membership represents a key feature to address the similarity issue. This is a highly important, but often overlooked, option of any practical pattern recognition system. We focused on Tumor-Grade-three-class problem, so we have 67 samples of grade I (G1), 54 samples of grade 3 (G3) and 100 samples of grade 2 (G2). The goal is to find a model able to separate G1 from G3, then evaluate the third class G2 as test-set to obtain the probability for samples of G2 to be member of class G1 or class G3. The analysis showed that breast cancer samples of grade II have a molecular profile more similar to breast cancer samples of grade I. Looking at the literature this result have been guessed, but no measure of significance was gived before.
Resumo:
For its particular position and the complex geological history, the Northern Apennines has been considered as a natural laboratory to apply several kinds of investigations. By the way, it is complicated to joint all the knowledge about the Northern Apennines in a unique picture that explains the structural and geological emplacement that produced it. The main goal of this thesis is to put together all information on the deformation - in the crust and at depth - of this region and to describe a geodynamical model that takes account of it. To do so, we have analyzed the pattern of deformation in the crust and in the mantle. In both cases the deformation has been studied using always information recovered from earthquakes, although using different techniques. In particular the shallower deformation has been studied using seismic moment tensors information. For our purpose we used the methods described in Arvidsson and Ekstrom (1998) that allowing the use in the inversion of surface waves [and not only of the body waves as the Centroid Moment Tensor (Dziewonski et al., 1981) one] allow to determine seismic source parameters for earthquakes with magnitude as small as 4.0. We applied this tool in the Northern Apennines and through this activity we have built up the Italian CMT dataset (Pondrelli et al., 2006) and the pattern of seismic deformation using the Kostrov (1974) method on a regular grid of 0.25 degree cells. We obtained a map of lateral variations of the pattern of seismic deformation on different layers of depth, taking into account the fact that shallow earthquakes (within 15 km of depth) in the region occur everywhere while most of events with a deeper hypocenter (15-40 km) occur only in the outer part of the belt, on the Adriatic side. For the analysis of the deep deformation, i.e. that occurred in the mantle, we used the anisotropy information characterizing the structure below the Northern Apennines. The anisotropy is an earth properties that in the crust is due to the presence of aligned fluid filled cracks or alternating isotropic layers with different elastic properties while in the mantle the most important cause of seismic anisotropy is the lattice preferred orientation (LPO) of the mantle minerals as the olivine. This last is a highly anisotropic mineral and tends to align its fast crystallographic axes (a-axis) parallel to the astenospheric flow as a response to finite strain induced by geodynamic processes. The seismic anisotropy pattern of a region is measured utilizing the shear wave splitting phenomenon (that is the seismological analogue to optical birefringence). Here, to do so, we apply on teleseismic earthquakes recorded on stations located in the study region, the Sileny and Plomerova (1996) approach. The results are analyzed on the basis of their lateral and vertical variations to better define the earth structure beneath Northern Apennines. We find different anisotropic domains, a Tuscany and an Adria one, with a pattern of seismic anisotropy which laterally varies in a similar way respect to the seismic deformation. Moreover, beneath the Adriatic region the distribution of the splitting parameters is so complex to request an appropriate analysis. Therefore we applied on our data the code of Menke and Levin (2003) which allows to look for different models of structures with multilayer anisotropy. We obtained that the structure beneath the Po Plain is probably even more complicated than expected. On the basis of the results obtained for this thesis, added with those from previous works, we suggest that slab roll-back, which created the Apennines and opened the Tyrrhenian Sea, evolved in the north boundary of Northern Apennines in a different way from its southern part. In particular, the trench retreat developed primarily south of our study region, with an eastward roll-back. In the northern portion of the orogen, after a first stage during which the retreat was perpendicular to the trench, it became oblique with respect to the structure.
Resumo:
Subduction zones are the favorite places to generate tsunamigenic earthquakes, where friction between oceanic and continental plates causes the occurrence of a strong seismicity. The topics and the methodologies discussed in this thesis are focussed to the understanding of the rupture process of the seismic sources of great earthquakes that generate tsunamis. The tsunamigenesis is controlled by several kinematical characteristic of the parent earthquake, as the focal mechanism, the depth of the rupture, the slip distribution along the fault area and by the mechanical properties of the source zone. Each of these factors plays a fundamental role in the tsunami generation. Therefore, inferring the source parameters of tsunamigenic earthquakes is crucial to understand the generation of the consequent tsunami and so to mitigate the risk along the coasts. The typical way to proceed when we want to gather information regarding the source process is to have recourse to the inversion of geophysical data that are available. Tsunami data, moreover, are useful to constrain the portion of the fault area that extends offshore, generally close to the trench that, on the contrary, other kinds of data are not able to constrain. In this thesis I have discussed the rupture process of some recent tsunamigenic events, as inferred by means of an inverse method. I have presented the 2003 Tokachi-Oki (Japan) earthquake (Mw 8.1). In this study the slip distribution on the fault has been inferred by inverting tsunami waveform, GPS, and bottom-pressure data. The joint inversion of tsunami and geodetic data has revealed a much better constrain for the slip distribution on the fault rather than the separate inversions of single datasets. Then we have studied the earthquake occurred on 2007 in southern Sumatra (Mw 8.4). By inverting several tsunami waveforms, both in the near and in the far field, we have determined the slip distribution and the mean rupture velocity along the causative fault. Since the largest patch of slip was concentrated on the deepest part of the fault, this is the likely reason for the small tsunami waves that followed the earthquake, pointing out how much the depth of the rupture plays a crucial role in controlling the tsunamigenesis. Finally, we have presented a new rupture model for the great 2004 Sumatra earthquake (Mw 9.2). We have performed the joint inversion of tsunami waveform, GPS and satellite altimetry data, to infer the slip distribution, the slip direction, and the rupture velocity on the fault. Furthermore, in this work we have presented a novel method to estimate, in a self-consistent way, the average rigidity of the source zone. The estimation of the source zone rigidity is important since it may play a significant role in the tsunami generation and, particularly for slow earthquakes, a low rigidity value is sometimes necessary to explain how a relatively low seismic moment earthquake may generate significant tsunamis; this latter point may be relevant for explaining the mechanics of the tsunami earthquakes, one of the open issues in present day seismology. The investigation of these tsunamigenic earthquakes has underlined the importance to use a joint inversion of different geophysical data to determine the rupture characteristics. The results shown here have important implications for the implementation of new tsunami warning systems – particularly in the near-field – the improvement of the current ones, and furthermore for the planning of the inundation maps for tsunami-hazard assessment along the coastal area.
Resumo:
We present a non linear technique to invert strong motion records with the aim of obtaining the final slip and rupture velocity distributions on the fault plane. In this thesis, the ground motion simulation is obtained evaluating the representation integral in the frequency. The Green’s tractions are computed using the discrete wave-number integration technique that provides the full wave-field in a 1D layered propagation medium. The representation integral is computed through a finite elements technique, based on a Delaunay’s triangulation on the fault plane. The rupture velocity is defined on a coarser regular grid and rupture times are computed by integration of the eikonal equation. For the inversion, the slip distribution is parameterized by 2D overlapping Gaussian functions, which can easily relate the spectrum of the possible solutions with the minimum resolvable wavelength, related to source-station distribution and data processing. The inverse problem is solved by a two-step procedure aimed at separating the computation of the rupture velocity from the evaluation of the slip distribution, the latter being a linear problem, when the rupture velocity is fixed. The non-linear step is solved by optimization of an L2 misfit function between synthetic and real seismograms, and solution is searched by the use of the Neighbourhood Algorithm. The conjugate gradient method is used to solve the linear step instead. The developed methodology has been applied to the M7.2, Iwate Nairiku Miyagi, Japan, earthquake. The estimated magnitude seismic moment is 2.6326 dyne∙cm that corresponds to a moment magnitude MW 6.9 while the mean the rupture velocity is 2.0 km/s. A large slip patch extends from the hypocenter to the southern shallow part of the fault plane. A second relatively large slip patch is found in the northern shallow part. Finally, we gave a quantitative estimation of errors associates with the parameters.
Resumo:
The term "Brain Imaging" identi�es a set of techniques to analyze the structure and/or functional behavior of the brain in normal and/or pathological situations. These techniques are largely used in the study of brain activity. In addition to clinical usage, analysis of brain activity is gaining popularity in others recent �fields, i.e. Brain Computer Interfaces (BCI) and the study of cognitive processes. In this context, usage of classical solutions (e.g. f MRI, PET-CT) could be unfeasible, due to their low temporal resolution, high cost and limited portability. For these reasons alternative low cost techniques are object of research, typically based on simple recording hardware and on intensive data elaboration process. Typical examples are ElectroEncephaloGraphy (EEG) and Electrical Impedance Tomography (EIT), where electric potential at the patient's scalp is recorded by high impedance electrodes. In EEG potentials are directly generated from neuronal activity, while in EIT by the injection of small currents at the scalp. To retrieve meaningful insights on brain activity from measurements, EIT and EEG relies on detailed knowledge of the underlying electrical properties of the body. This is obtained from numerical models of the electric �field distribution therein. The inhomogeneous and anisotropic electric properties of human tissues make accurate modeling and simulation very challenging, leading to a tradeo�ff between physical accuracy and technical feasibility, which currently severely limits the capabilities of these techniques. Moreover elaboration of data recorded requires usage of regularization techniques computationally intensive, which influences the application with heavy temporal constraints (such as BCI). This work focuses on the parallel implementation of a work-flow for EEG and EIT data processing. The resulting software is accelerated using multi-core GPUs, in order to provide solution in reasonable times and address requirements of real-time BCI systems, without over-simplifying the complexity and accuracy of the head models.
Resumo:
In the last years, sustainable horticulture has been increasing; however, to be successful this practice needs an efficient soil fertility management to maintain a high productivity and fruit quality standards. For this purpose composted organic materials from agri-food industry and municipal solid waste has been used as a source to replace chemical fertilizers and increase soil organic matter. To better understand the influence of compost application on soil fertility and plant growth, we carried out a study comparing organic and mineral nitrogen (N) fertilization in micro propagated plants, potted trees and commercial peach orchard with these aims: 1. evaluation of tree development, CO2 fixation and carbon partition to the different organs of two-years-old potted peach trees. 2. Determination of soil N concentration and nitrate-N effect on plant growth and root oxidative stress of micro propagated plant after increasing rates of N applications. 3. Assessment of soil chemical and biological fertility, tree growth and yield and fruit quality in a commercial orchard. The addition of compost at high rate was effective in increasing CO2 fixation, promoting root growth, shoot and fruit biomass. Furthermore, organic fertilizers influenced C partitioning, favoring C accumulation in roots, wood and fruits. The higher CO2 fixation was the result of a larger tree leaf area, rather than an increase in leaf photosynthetic efficiency, showing a stimulation of plant growth by application of compost. High concentrations of compost increased total soil N concentration, but were not effective in increasing nitrate-N soil concentration; in contrast mineral-N applications increased linearly soil nitrate-N, even at the lowest rate tested. Soil nitrate-N concentration influenced positively plant growth at low rate (60- 80 mg kg-1), whereas at high concentrations showed negative effects. In this trial, the decrease of root growth, as a response to excessive nitrate-N soil concentration, was not anticipated by root oxidative stress. Continuous annual applications of compost for 10 years enhanced soil organic matter content and total soil N concentration. Additionally, high rate of compost application (10 t ha-1 year-1) enhanced microbial biomass. On the other hand, different fertilizers management did not modify tree yield, but influenced fruit size and precocity index. The present data support the idea that organic fertilizers can be used successfully as a substitute of mineral fertilizers in fruit tree nutrient management, since they promote an increase of soil chemical and biological fertility, prevent excessive nitrate-N soil concentration, promote plant growth and potentially C sequestration into the soil.
Resumo:
There are different ways to do cluster analysis of categorical data in the literature and the choice among them is strongly related to the aim of the researcher, if we do not take into account time and economical constraints. Main approaches for clustering are usually distinguished into model-based and distance-based methods: the former assume that objects belonging to the same class are similar in the sense that their observed values come from the same probability distribution, whose parameters are unknown and need to be estimated; the latter evaluate distances among objects by a defined dissimilarity measure and, basing on it, allocate units to the closest group. In clustering, one may be interested in the classification of similar objects into groups, and one may be interested in finding observations that come from the same true homogeneous distribution. But do both of these aims lead to the same clustering? And how good are clustering methods designed to fulfil one of these aims in terms of the other? In order to answer, two approaches, namely a latent class model (mixture of multinomial distributions) and a partition around medoids one, are evaluated and compared by Adjusted Rand Index, Average Silhouette Width and Pearson-Gamma indexes in a fairly wide simulation study. Simulation outcomes are plotted in bi-dimensional graphs via Multidimensional Scaling; size of points is proportional to the number of points that overlap and different colours are used according to the cluster membership.
Resumo:
During my PhD, starting from the original formulations proposed by Bertrand et al., 2000 and Emolo & Zollo 2005, I developed inversion methods and applied then at different earthquakes. In particular large efforts have been devoted to the study of the model resolution and to the estimation of the model parameter errors. To study the source kinematic characteristics of the Christchurch earthquake we performed a joint inversion of strong-motion, GPS and InSAR data using a non-linear inversion method. Considering the complexity highlighted by superficial deformation data, we adopted a fault model consisting of two partially overlapping segments, with dimensions 15x11 and 7x7 km2, having different faulting styles. This two-fault model allows to better reconstruct the complex shape of the superficial deformation data. The total seismic moment resulting from the joint inversion is 3.0x1025 dyne.cm (Mw = 6.2) with an average rupture velocity of 2.0 km/s. Errors associated with the kinematic model have been estimated of around 20-30 %. The 2009 Aquila sequence was characterized by an intense aftershocks sequence that lasted several months. In this study we applied an inversion method that assumes as data the apparent Source Time Functions (aSTFs), to a Mw 4.0 aftershock of the Aquila sequence. The estimation of aSTFs was obtained using the deconvolution method proposed by Vallée et al., 2004. The inversion results show a heterogeneous slip distribution, characterized by two main slip patches located NW of the hypocenter, and a variable rupture velocity distribution (mean value of 2.5 km/s), showing a rupture front acceleration in between the two high slip zones. Errors of about 20% characterize the final estimated parameters.
Resumo:
The aim of this thesis is to apply multilevel regression model in context of household surveys. Hierarchical structure in this type of data is characterized by many small groups. In last years comparative and multilevel analysis in the field of perceived health have grown in size. The purpose of this thesis is to develop a multilevel analysis with three level of hierarchy for Physical Component Summary outcome to: evaluate magnitude of within and between variance at each level (individual, household and municipality); explore which covariates affect on perceived physical health at each level; compare model-based and design-based approach in order to establish informativeness of sampling design; estimate a quantile regression for hierarchical data. The target population are the Italian residents aged 18 years and older. Our study shows a high degree of homogeneity within level 1 units belonging from the same group, with an intraclass correlation of 27% in a level-2 null model. Almost all variance is explained by level 1 covariates. In fact, in our model the explanatory variables having more impact on the outcome are disability, unable to work, age and chronic diseases (18 pathologies). An additional analysis are performed by using novel procedure of analysis :"Linear Quantile Mixed Model", named "Multilevel Linear Quantile Regression", estimate. This give us the possibility to describe more generally the conditional distribution of the response through the estimation of its quantiles, while accounting for the dependence among the observations. This has represented a great advantage of our models with respect to classic multilevel regression. The median regression with random effects reveals to be more efficient than the mean regression in representation of the outcome central tendency. A more detailed analysis of the conditional distribution of the response on other quantiles highlighted a differential effect of some covariate along the distribution.
Resumo:
Throughout the alpine domain, shallow landslides represent a serious geologic hazard, often causing severe damages to infrastructures, private properties, natural resources and in the most catastrophic events, threatening human lives. Landslides are a major factor of landscape evolution in mountainous and hilly regions and represent a critical issue for mountainous land management, since they cause loss of pastoral lands. In several alpine contexts, shallow landsliding distribution is strictly connected to the presence and condition of vegetation on the slopes. With the aid of high-resolution satellite images, it's possible to divide automatically the mountainous territory in land cover classes, which contribute with different magnitude to the stability of the slopes. The aim of this research is to combine EO (Earth Observation) land cover maps with ground-based measurements of the land cover properties. In order to achieve this goal, a new procedure has been developed to automatically detect grass mantle degradation patterns from satellite images. Moreover, innovative surveying techniques and instruments are tested to measure in situ the shear strength of grass mantle and the geomechanical and geotechnical properties of these alpine soils. Shallow landsliding distribution is assessed with the aid of physically based models, which use the EO-based map to distribute the resistance parameters across the landscape.
Resumo:
The recent advent of Next-generation sequencing technologies has revolutionized the way of analyzing the genome. This innovation allows to get deeper information at a lower cost and in less time, and provides data that are discrete measurements. One of the most important applications with these data is the differential analysis, that is investigating if one gene exhibit a different expression level in correspondence of two (or more) biological conditions (such as disease states, treatments received and so on). As for the statistical analysis, the final aim will be statistical testing and for modeling these data the Negative Binomial distribution is considered the most adequate one especially because it allows for "over dispersion". However, the estimation of the dispersion parameter is a very delicate issue because few information are usually available for estimating it. Many strategies have been proposed, but they often result in procedures based on plug-in estimates, and in this thesis we show that this discrepancy between the estimation and the testing framework can lead to uncontrolled first-type errors. We propose a mixture model that allows each gene to share information with other genes that exhibit similar variability. Afterwards, three consistent statistical tests are developed for differential expression analysis. We show that the proposed method improves the sensitivity of detecting differentially expressed genes with respect to the common procedures, since it is the best one in reaching the nominal value for the first-type error, while keeping elevate power. The method is finally illustrated on prostate cancer RNA-seq data.