4 resultados para Data compression (Computer science)

em AMS Tesi di Dottorato - Alm@DL - Università di Bologna


Relevância:

100.00% 100.00%

Publicador:

Resumo:

The discovery of new materials and their functions has always been a fundamental component of technological progress. Nowadays, the quest for new materials is stronger than ever: sustainability, medicine, robotics and electronics are all key assets which depend on the ability to create specifically tailored materials. However, designing materials with desired properties is a difficult task, and the complexity of the discipline makes it difficult to identify general criteria. While scientists developed a set of best practices (often based on experience and expertise), this is still a trial-and-error process. This becomes even more complex when dealing with advanced functional materials. Their properties depend on structural and morphological features, which in turn depend on fabrication procedures and environment, and subtle alterations leads to dramatically different results. Because of this, materials modeling and design is one of the most prolific research fields. Many techniques and instruments are continuously developed to enable new possibilities, both in the experimental and computational realms. Scientists strive to enforce cutting-edge technologies in order to make progress. However, the field is strongly affected by unorganized file management, proliferation of custom data formats and storage procedures, both in experimental and computational research. Results are difficult to find, interpret and re-use, and a huge amount of time is spent interpreting and re-organizing data. This also strongly limit the application of data-driven and machine learning techniques. This work introduces possible solutions to the problems described above. Specifically, it talks about developing features for specific classes of advanced materials and use them to train machine learning models and accelerate computational predictions for molecular compounds; developing method for organizing non homogeneous materials data; automate the process of using devices simulations to train machine learning models; dealing with scattered experimental data and use them to discover new patterns.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

The fourth industrial revolution, also known as Industry 4.0, has rapidly gained traction in businesses across Europe and the world, becoming a central theme in small, medium, and large enterprises alike. This new paradigm shifts the focus from locally-based and barely automated firms to a globally interconnected industrial sector, stimulating economic growth and productivity, and supporting the upskilling and reskilling of employees. However, despite the maturity and scalability of information and cloud technologies, the support systems already present in the machine field are often outdated and lack the necessary security, access control, and advanced communication capabilities. This dissertation proposes architectures and technologies designed to bridge the gap between Operational and Information Technology, in a manner that is non-disruptive, efficient, and scalable. The proposal presents cloud-enabled data-gathering architectures that make use of the newest IT and networking technologies to achieve the desired quality of service and non-functional properties. By harnessing industrial and business data, processes can be optimized even before product sale, while the integrated environment enhances data exchange for post-sale support. The architectures have been tested and have shown encouraging performance results, providing a promising solution for companies looking to embrace Industry 4.0, enhance their operational capabilities, and prepare themselves for the upcoming fifth human-centric revolution.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

In recent years, IoT technology has radically transformed many crucial industrial and service sectors such as healthcare. The multi-facets heterogeneity of the devices and the collected information provides important opportunities to develop innovative systems and services. However, the ubiquitous presence of data silos and the poor semantic interoperability in the IoT landscape constitute a significant obstacle in the pursuit of this goal. Moreover, achieving actionable knowledge from the collected data requires IoT information sources to be analysed using appropriate artificial intelligence techniques such as automated reasoning. In this thesis work, Semantic Web technologies have been investigated as an approach to address both the data integration and reasoning aspect in modern IoT systems. In particular, the contributions presented in this thesis are the following: (1) the IoT Fitness Ontology, an OWL ontology that has been developed in order to overcome the issue of data silos and enable semantic interoperability in the IoT fitness domain; (2) a Linked Open Data web portal for collecting and sharing IoT health datasets with the research community; (3) a novel methodology for embedding knowledge in rule-defined IoT smart home scenarios; and (4) a knowledge-based IoT home automation system that supports a seamless integration of heterogeneous devices and data sources.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Following the approval of the 2030 Agenda for Sustainable Development in 2015, sustainability became a hotly debated topic. In order to build a better and more sustainable future by 2030, this agenda addressed several global issues, including inequality, climate change, peace, and justice, in the form of 17 Sustainable Development Goals (SDGs), that should be understood and pursued by nations, corporations, institutions, and individuals. In this thesis, we researched how to exploit and integrate Human-Computer Interaction (HCI) and Data Visualization to promote knowledge and awareness about SDG 8, which wants to encourage lasting, inclusive, and sustainable economic growth, full and productive employment, and decent work for all. In particular, we focused on three targets: green economy, sustainable tourism, employment, decent work for all, and social protection. The primary goal of this research is to determine whether HCI approaches may be used to create and validate interactive data visualization that can serve as helpful decision-making aids for specific groups and raise their knowledge of public-interest issues. To accomplish this goal, we analyzed four case studies. In the first two, we wanted to promote knowledge and awareness about green economy issues: we investigated the Human-Building Interaction inside a Smart Campus and the dematerialization process inside a University. In the third, we focused on smart tourism, investigating the relationship between locals and tourists to create meaningful connections and promote more sustainable tourism. In the fourth, we explored the industry context to highlight sustainability policies inside well-known companies. This research focuses on the hypothesis that interactive data visualization tools can make communities aware of sustainability aspects related to SDG8 and its targets. The research questions addressed are two: "how to promote awareness about SDG8 and its targets through interactive data visualizations?" and "to what extent are these interactive data visualizations effective?".