7 resultados para Data Warehousing Systems

em AMS Tesi di Dottorato - Alm@DL - Università di Bologna


Relevância:

100.00% 100.00%

Publicador:

Resumo:

The thesis represents the conclusive outcome of the European Joint Doctorate programmein Law, Science & Technology funded by the European Commission with the instrument Marie Skłodowska-Curie Innovative Training Networks actions inside of the H2020, grantagreement n. 814177. The tension between data protection and privacy from one side, and the need of granting further uses of processed personal datails is investigated, drawing the lines of the technological development of the de-anonymization/re-identification risk with an explorative survey. After acknowledging its span, it is questioned whether a certain degree of anonymity can still be granted focusing on a double perspective: an objective and a subjective perspective. The objective perspective focuses on the data processing models per se, while the subjective perspective investigates whether the distribution of roles and responsibilities among stakeholders can ensure data anonymity.

Relevância:

80.00% 80.00%

Publicador:

Resumo:

In the last few years, a new generation of Business Intelligence (BI) tools called BI 2.0 has emerged to meet the new and ambitious requirements of business users. BI 2.0 not only introduces brand new topics, but in some cases it re-examines past challenges according to new perspectives depending on the market changes and needs. In this context, the term pervasive BI has gained increasing interest as an innovative and forward-looking perspective. This thesis investigates three different aspects of pervasive BI: personalization, timeliness, and integration. Personalization refers to the capacity of BI tools to customize the query result according to the user who takes advantage of it, facilitating the fruition of BI information by different type of users (e.g., front-line employees, suppliers, customers, or business partners). In this direction, the thesis proposes a model for On-Line Analytical Process (OLAP) query personalization to reduce the query result to the most relevant information for the specific user. Timeliness refers to the timely provision of business information for decision-making. In this direction, this thesis defines a new Data Warehuose (DW) methodology, Four-Wheel-Drive (4WD), that combines traditional development approaches with agile methods; the aim is to accelerate the project development and reduce the software costs, so as to decrease the number of DW project failures and favour the BI tool penetration even in small and medium companies. Integration refers to the ability of BI tools to allow users to access information anywhere it can be found, by using the device they prefer. To this end, this thesis proposes Business Intelligence Network (BIN), a peer-to-peer data warehousing architecture, where a user can formulate an OLAP query on its own system and retrieve relevant information from both its local system and the DWs of the net, preserving its autonomy and independency.

Relevância:

80.00% 80.00%

Publicador:

Resumo:

Pervasive Sensing is a recent research trend that aims at providing widespread computing and sensing capabilities to enable the creation of smart environments that can sense, process, and act by considering input coming from both people and devices. The capabilities necessary for Pervasive Sensing are nowadays available on a plethora of devices, from embedded devices to PCs and smartphones. The wide availability of new devices and the large amount of data they can access enable a wide range of novel services in different areas, spanning from simple data collection systems to socially-aware collaborative filtering. However, the strong heterogeneity and unreliability of devices and sensors poses significant challenges. So far, existing works on Pervasive Sensing have focused only on limited portions of the whole stack of available devices and data that they can use, to propose and develop mainly vertical solutions. The push from academia and industry for this kind of services shows that time is mature for a more general support framework for Pervasive Sensing solutions able to enhance frail architectures, promote a well balanced usage of resources on different devices, and enable the widest possible access to sensed data, while ensuring a minimal energy consumption on battery-operated devices. This thesis focuses on pervasive sensing systems to extract design guidelines as foundation of a comprehensive reference model for multi-tier Pervasive Sensing applications. The validity of the proposed model is tested in five different scenarios that present peculiar and different requirements, and different hardware and sensors. The ease of mapping from the proposed logical model to the real implementations and the positive performance result campaigns prove the quality of the proposed approach and offer a reliable reference model, together with a direction for the design and deployment of future Pervasive Sensing applications.

Relevância:

80.00% 80.00%

Publicador:

Resumo:

Negli ultimi anni, i limiti sempre più stringenti sulle emissioni inquinanti dei gas di scarico, hanno portato ad un notevole aumento della complessità dei motori a combustione interna. Questa complicazione determina un aumento esponenziale del numero di test da effettuare nella sala prova. I metodi tipici di gestione dei test non possono più essere utilizzati, ma è essenziale creare un sistema che ottimizzi le prove. Per ridurre drasticamente il tempo di esecuzione, è necessario implementare un'architettura in grado di facilitare lo scambio di dati tra i sistemi presenti nella sala prova, e, in aggiunta, definire le strategie di automazione dei test. L'approccio a taluni metodi si presenta ancora complicato in molti gruppi di sviluppo di strategie di controllo motore, anche se, una volta sviluppati, portano e a grandi benefici durante la fase di test. Il lavoro illustra i metodi implementati per la gestione di queste strategie. Prima si descrive l'approccio utilizzato nella calibrazione di anticipo di accensione per mantenere livelli accettabili di detonazione durante il processo di calibrazione. Successivamente è mostrato il sistema di automazione dei test che consente il pieno controllo del punto di funzionamento del motore, la gestione dell'acquisizione e la verifica della stabilità delle condizioni ottenute. L'ultima parte mostra sistemi di prototipazione rapida per la gestione di componenti innovatici del motore.

Relevância:

40.00% 40.00%

Publicador:

Resumo:

In recent years, IoT technology has radically transformed many crucial industrial and service sectors such as healthcare. The multi-facets heterogeneity of the devices and the collected information provides important opportunities to develop innovative systems and services. However, the ubiquitous presence of data silos and the poor semantic interoperability in the IoT landscape constitute a significant obstacle in the pursuit of this goal. Moreover, achieving actionable knowledge from the collected data requires IoT information sources to be analysed using appropriate artificial intelligence techniques such as automated reasoning. In this thesis work, Semantic Web technologies have been investigated as an approach to address both the data integration and reasoning aspect in modern IoT systems. In particular, the contributions presented in this thesis are the following: (1) the IoT Fitness Ontology, an OWL ontology that has been developed in order to overcome the issue of data silos and enable semantic interoperability in the IoT fitness domain; (2) a Linked Open Data web portal for collecting and sharing IoT health datasets with the research community; (3) a novel methodology for embedding knowledge in rule-defined IoT smart home scenarios; and (4) a knowledge-based IoT home automation system that supports a seamless integration of heterogeneous devices and data sources.

Relevância:

40.00% 40.00%

Publicador:

Resumo:

The General Data Protection Regulation (GDPR) has been designed to help promote a view in favor of the interests of individuals instead of large corporations. However, there is the need of more dedicated technologies that can help companies comply with GDPR while enabling people to exercise their rights. We argue that such a dedicated solution must address two main issues: the need for more transparency towards individuals regarding the management of their personal information and their often hindered ability to access and make interoperable personal data in a way that the exercise of one's rights would result in straightforward. We aim to provide a system that helps to push personal data management towards the individual's control, i.e., a personal information management system (PIMS). By using distributed storage and decentralized computing networks to control online services, users' personal information could be shifted towards those directly concerned, i.e., the data subjects. The use of Distributed Ledger Technologies (DLTs) and Decentralized File Storage (DFS) as an implementation of decentralized systems is of paramount importance in this case. The structure of this dissertation follows an incremental approach to describing a set of decentralized systems and models that revolves around personal data and their subjects. Each chapter of this dissertation builds up the previous one and discusses the technical implementation of a system and its relation with the corresponding regulations. We refer to the EU regulatory framework, including GDPR, eIDAS, and Data Governance Act, to build our final system architecture's functional and non-functional drivers. In our PIMS design, personal data is kept in a Personal Data Space (PDS) consisting of encrypted personal data referring to the subject stored in a DFS. On top of that, a network of authorization servers acts as a data intermediary to provide access to potential data recipients through smart contracts.

Relevância:

40.00% 40.00%

Publicador:

Resumo:

This thesis investigates the legal, ethical, technical, and psychological issues of general data processing and artificial intelligence practices and the explainability of AI systems. It consists of two main parts. In the initial section, we provide a comprehensive overview of the big data processing ecosystem and the main challenges we face today. We then evaluate the GDPR’s data privacy framework in the European Union. The Trustworthy AI Framework proposed by the EU’s High-Level Expert Group on AI (AI HLEG) is examined in detail. The ethical principles for the foundation and realization of Trustworthy AI are analyzed along with the assessment list prepared by the AI HLEG. Then, we list the main big data challenges the European researchers and institutions identified and provide a literature review on the technical and organizational measures to address these challenges. A quantitative analysis is conducted on the identified big data challenges and the measures to address them, which leads to practical recommendations for better data processing and AI practices in the EU. In the subsequent part, we concentrate on the explainability of AI systems. We clarify the terminology and list the goals aimed at the explainability of AI systems. We identify the reasons for the explainability-accuracy trade-off and how we can address it. We conduct a comparative cognitive analysis between human reasoning and machine-generated explanations with the aim of understanding how explainable AI can contribute to human reasoning. We then focus on the technical and legal responses to remedy the explainability problem. In this part, GDPR’s right to explanation framework and safeguards are analyzed in-depth with their contribution to the realization of Trustworthy AI. Then, we analyze the explanation techniques applicable at different stages of machine learning and propose several recommendations in chronological order to develop GDPR-compliant and Trustworthy XAI systems.