3 resultados para DUI
em AMS Tesi di Dottorato - Alm@DL - Università di Bologna
Resumo:
Mitochondria are inherited maternally in most metazoans. However, in some bivalves, two mitochondrial lineages are present: one transmitted through eggs (F), the other through sperm (M). This is called Doubly Uniparental Inheritance (DUI). During male embryo development, spermatozoon mitochondria aggregate and end up in the primordial germ cells, while they are dispersed in female embryos. The molecular mechanisms of segregation patterns are still unknown. In the DUI species Ruditapes philippinarum, I examined sperm mitochondria distribution by MitoTracker, microtubule staining and TEM, and I localized germ line determinants with immunocytochemical analysis. I also analyzed the gonad transcriptome, searching for genes involved in reproduction and sex determination. Moreover, I analyzed an M-type specific open reading frame that could be responsible for maintenance/degradation of M mitochondria during embryo development. These transcripts were also localized in tissues using in situ hybridization. As in Mytilus, two distribution patterns of M mitochondria were detected in R. philippinarum, supporting that they are related to DUI. Moreover, the first division midbody concurs in positioning aggregated M mitochondria on the animal-vegetal axis of the male embryo: in organisms with spiral segmentation this zone is not involved in further cleavages, so aggregation is maintained. Moreover, sperm mitochondria reach the same embryonic area where germ plasm is transferred, suggesting their contribution in male germ line formation. The finding of reproduction and ubiquitination transcripts led to formulate a model in which ubiquitination genes stored in female oocytes during gametogenesis would activate sex-gene expression in the early embryonic developmental stages (preformation). Only gametogenetic cells were labeled by in situ hybridization, proving their specific transcription in developing gametes. Other than having a role in sex determination, some ubiquination factors could also be involved in mitochondrial inheritance, and their differential expression could be responsible for the different fate of sperm mitochondria in the two sexes.
Resumo:
Many bivalve species possess two distinct mtDNA lineages, called F and M, respectively inherited maternally and paternally: this system is called doubly uniparental inheritance (DUI). The main experimental project of my PhD was the quantification of the two mtDNAs during the development of the DUI species Ruditapes philippinarum, from early embryos to sub-adults, using Real-Time qPCR. I identified the time interval in which M mtDNA is lost from female individuals, while it is retained in males (which are heteroplasmic through all of their life cycle). The results also suggested absence of mtDNA replication during early embryogenesis, a process constituting a bottleneck that highly reduces the copy number of mtDNA molecules in cells of developing larvae. In males this bottleneck may produce cells homoplasmic for M mtDNA, and could be considered as a first step of the segregation of M in the male germ line. Another finding was the characterization, in young clams approaching the first reproductive season, of a significant boost in copy number of F mtDNA in females and of M in males. Given the age of animals in which this mtDNA-specific growth was observed, the finding could probably be the outcome of the first round of gonads and gametes production. Other lines of research included the characterization of the unassigned regions in mt genomes of DUI bivalves. These regions can harbor signals involved in the control of replication and/or transcription of the mtDNA molecule, as well as additional open reading frames (ORFs) not related to oxidative phosphorylation. These features in DUI species could be associated to the maintenance of separate inheritance routes for the two mtDNAs. Additional ORFs are also found in other animal mt genomes: I summarized the presence of gene duplications as a co-author in a review focusing on animal mt genomes with unusual gene content.