3 resultados para DTI tractography
em AMS Tesi di Dottorato - Alm@DL - Università di Bologna
Resumo:
The language connectome was in-vivo investigated using multimodal non-invasive quantitative MRI. In PPA patients (n=18) recruited by the IRCCS ISNB, Bologna, cortical thickness measures showed a predominant reduction on the left hemisphere (p<0.005) with respect to matched healthy controls (HC) (n=18), and an accuracy of 86.1% in discrimination from Alzheimer’s disease patients (n=18). The left temporal and para-hippocampal gyri significantly correlated (p<0.01) with language fluency. In PPA patients (n=31) recruited by the Northwestern University Chicago, DTI measures were longitudinally evaluated (2-years follow-up) under the supervision of Prof. M. Catani, King’s College London. Significant differences with matched HC (n=27) were found, tract-localized at baseline and widespread in the follow-up. Language assessment scores correlated with arcuate (AF) and uncinate (UF) fasciculi DTI measures. In left-ischemic stroke patients (n=16) recruited by the NatBrainLab, King’s College London, language recovery was longitudinally evaluated (6-months follow-up). Using arterial spin labelling imaging a significant correlation (p<0.01) between language recovery and cerebral blood flow asymmetry, was found in the middle cerebral artery perfusion, towards the right. In HC (n=29) recruited by the DIBINEM Functional MR Unit, University of Bologna, an along-tract algorithm was developed suitable for different tractography methods, using the Laplacian operator. A higher left superior temporal gyrus and precentral operculum AF connectivity was found (Talozzi L et al., 2018), and lateralized UF projections towards the left dorsal orbital cortex. In HC (n=50) recruited in the Human Connectome Project, a new tractography-driven approach was developed for left association fibres, using a principal component analysis. The first component discriminated cortical areas typically connected by the AF, suggesting a good discrimination of cortical areas sharing a similar connectivity pattern. The evaluation of morphological, microstructural and metabolic measures could be used as in-vivo biomarkers to monitor language impairment related to neurodegeneration or as surrogate of cognitive rehabilitation/interventional treatment efficacy.
Resumo:
Aim The aim of my Ph.D. was to implement a diffusion tensor tractography (DTT) pipeline to reconstruct cranial nerve I (olfactory) to study COVID-19 patients, and anterior optic pathway (AOP, including optic nerve, chiasm, and optic tract) to study patients with sellar/parasellar tumors, and with Leber’s Hereditary Optic Neuropathy (LHON). Methods We recruited 23 patients with olfactory dysfunction after COVID-19 infection (mean age 37±14 years, 12 females); 27 patients with sellar/parasellar tumors displacing the optic chiasm eligible for endonasal endoscopic surgery (mean age 53. ±16.4 years, 13 female) and 6 LHON patients (mutation 11778/MT-ND4, mean age 24.9±15.7 years). Sex- and age-matched healthy control were also recruited. In LHON patients, optical coherence tomography (OCT) was performed. Acquisitions were performed on a clinical high field 3-T MRI scanner, using a multi-shell HARDI (High Angular Resolution Diffusion Imaging) sequence (b-values 0-300-1000-2000 s/mm2, 64 maximum gradient directions, 2mm3 isotropic voxel). DTT was performed with a multi-tissue spherical deconvolution approach and mean diffusivity (MD) DTT metrics were compared with healthy controls using an unpaired t-test. Correlations of DTT metrics with clinical data were sought by regression analysis. Results In all 23 hypo/anosmic patients with previous COVID-19 infection the CN I was successfully reconstructed with no DTT metrics alterations, thus suggesting the pathogenetic role of central olfactory cortical system dysfunction. In all 27 patients with sellar/parasellar tumors the AOP was reconstructed, and in 11/13 (84.7%) undergoing endonasal endoscopic surgery the anatomical fidelity of the reconstruction was confirmed; a significant decrease in MD within the chiasma (p<0.0001) was also found. In LHON patients a reduction of MD in the AOP was significantly associated with OCT parameters (p=0.036). Conclusions Multi-shell HARDI diffusion-weighted MRI followed by multi-tissue spherical deconvolution for the DTT reconstruction of the CN I and AOP has been implemented, and its utility demonstrated in clinical practice.
Resumo:
Deep learning methods are extremely promising machine learning tools to analyze neuroimaging data. However, their potential use in clinical settings is limited because of the existing challenges of applying these methods to neuroimaging data. In this study, first a data leakage type caused by slice-level data split that is introduced during training and validation of a 2D CNN is surveyed and a quantitative assessment of the model’s performance overestimation is presented. Second, an interpretable, leakage-fee deep learning software written in a python language with a wide range of options has been developed to conduct both classification and regression analysis. The software was applied to the study of mild cognitive impairment (MCI) in patients with small vessel disease (SVD) using multi-parametric MRI data where the cognitive performance of 58 patients measured by five neuropsychological tests is predicted using a multi-input CNN model taking brain image and demographic data. Each of the cognitive test scores was predicted using different MRI-derived features. As MCI due to SVD has been hypothesized to be the effect of white matter damage, DTI-derived features MD and FA produced the best prediction outcome of the TMT-A score which is consistent with the existing literature. In a second study, an interpretable deep learning system aimed at 1) classifying Alzheimer disease and healthy subjects 2) examining the neural correlates of the disease that causes a cognitive decline in AD patients using CNN visualization tools and 3) highlighting the potential of interpretability techniques to capture a biased deep learning model is developed. Structural magnetic resonance imaging (MRI) data of 200 subjects was used by the proposed CNN model which was trained using a transfer learning-based approach producing a balanced accuracy of 71.6%. Brain regions in the frontal and parietal lobe showing the cerebral cortex atrophy were highlighted by the visualization tools.