4 resultados para DNA, polypeptide, oligonucleotide, block copolymer, light scattering

em AMS Tesi di Dottorato - Alm@DL - Università di Bologna


Relevância:

100.00% 100.00%

Publicador:

Resumo:

Supramolecular self-assembly represents a key technology for the spontaneous construction of nanoarchitectures and for the fabrication of materials with enhanced physical and chemical properties. In addition, a significant asset of supramolecular self-assemblies rests on their reversible formation, thanks to the kinetic lability of their non-covalent interactions. This dynamic nature can be exploited for the development of “self-healing” and “smart” materials towards the tuning of their functional properties upon various external factors. One particular intriguing objective in the field is to reach a high level of control over the shape and size of the supramolecular architectures, in order to produce well-defined functional nanostructures by rational design. In this direction, many investigations have been pursued toward the construction of self-assembled objects from numerous low-molecular weight scaffolds, for instance by exploiting multiple directional hydrogen-bonding interactions. In particular, nucleobases have been used as supramolecular synthons as a result of their efficiency to code for non-covalent interaction motifs. Among nucleobases, guanine represents the most versatile one, because of its different H-bond donor and acceptor sites which display self-complementary patterns of interactions. Interestingly, and depending on the environmental conditions, guanosine derivatives can form various types of structures. Most of the supramolecular architectures reported in this Thesis from guanosine derivatives require the presence of a cation which stabilizes, via dipole-ion interactions, the macrocyclic G-quartet that can, in turn, stack in columnar G-quadruplex arrangements. In addition, in absence of cations, guanosine can polymerize via hydrogen bonding to give a variety of supramolecular networks including linear ribbons. This complex supramolecular behavior confers to the guanine-guanine interactions their upper interest among all the homonucleobases studied. They have been subjected to intense investigations in various areas ranging from structural biology and medicinal chemistry – guanine-rich sequences are abundant in telomeric ends of chromosomes and promoter regions of DNA, and are capable of forming G-quartet based structures– to material science and nanotechnology. This Thesis, organized into five Chapters, describes mainly some recent advances in the form and function provided by self-assembly of guanine based systems. More generally, Chapter 4 will focus on the construction of supramolecular self-assemblies whose self-assembling process and self-assembled architectures can be controlled by light as external stimulus. Chapter 1 will describe some of the many recent studies of G-quartets in the general area of nanoscience. Natural G- quadruplexes can be useful motifs to build new structures and biomaterials such as self-assembled nanomachines, biosensors, therapeutic aptamer and catalysts. In Chapters 2-4 it is pointed out the core concept held in this PhD Thesis, i.e. the supramolecular organization of lipophilic guanosine derivatives with photo or chemical addressability. Chapter 2 will mainly focus on the use of cation-templated guanosine derivatives as a potential scaffold for designing functional materials with tailored physical properties, showing a new way to control the bottom-up realization of well-defined nanoarchitectures. In section 2.6.7, the self-assembly properties of compound 28a may be considered an example of open-shell moieties ordered by a supramolecular guanosine architecture showing a new (magnetic) property. Chapter 3 will report on ribbon-like structures, supramolecular architectures formed by guanosine derivatives that may be of interest for the fabrication of molecular nanowires within the framework of future molecular electronic applications. In section 3.4 we investigate the supramolecular polymerizations of derivatives dG 1 and G 30 by light scattering technique and TEM experiments. The obtained data reveal the presence of several levels of organization due to the hierarchical self-assembly of the guanosine units in ribbons that in turn aggregate in fibrillar or lamellar soft structures. The elucidation of these structures furnishes an explanation to the physical behaviour of guanosine units which display organogelator properties. Chapter 4 will describe photoresponsive self-assembling systems. Numerous research examples have demonstrated that the use of photochromic molecules in supramolecular self-assemblies is the most reasonable method to noninvasively manipulate their degree of aggregation and supramolecular architectures. In section 4.4 we report on the photocontrolled self-assembly of modified guanosine nucleobase E-42: by the introduction of a photoactive moiety at C8 it is possible to operate a photocontrol over the self-assembly of the molecule, where the existence of G-quartets can be alternately switched on and off. In section 4.5 we focus on the use of cyclodextrins as photoresponsive host-guest assemblies: αCD–azobenzene conjugates 47-48 (section 4.5.3) are synthesized in order to obtain a photoresponsive system exhibiting a fine photocontrollable degree of aggregation and self-assembled architecture. Finally, Chapter 5 contains the experimental protocols used for the research described in Chapters 2-4.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Among various nanoparticles, noble metal nanoparticles have attracted considerable attention due to their optical, catalytic and conducting properties. This work has been focused on the development of an innovative method of synthesis for the preparation of metal nanosuspensions of Au, Ag, Cu, in order to achieve stable sols, showing suitable features to allow an industrial scale up of the processes. The research was developed in collaboration with a company interested in the large scale production of the studied nanosuspensions. In order to develop a commercial process, high solid concentration, long time colloidal stability and particle size control, are required. Two synthesis routes, differing by the used solvents, have been implemented: polyol based and water based synthesis. In order to achieve a process intensification the microwave heating has been applied. As a result, colloidal nanosuspensions with suitable dimensions, good optical properties, very high solid content and good stability, have been synthesized by simple and environmental friendly methods. Particularly, due to some interesting results an optimized synthesis process has been patented. Both water and polyol based synthesis, developed in the presence of a reducing agent and of a chelating polymer, allowed to obtain particle size-control and colloidal stability by tuning the different parameters. Furthermore, it has been verified that microwave device, due to its rapid and homogeneous heating, provides some advantages over conventional method. In order to optimize the final suspensions properties, for each synthesis it has been studied the effect of different parameters (temperature, time, precursors concentrations, etc) and throughout a specific optimization action a right control on nucleation and growth processes has been achieved. The achieved nanoparticles were confirmed by XRD analysis to be the desired metal phases, even at the lowest synthesis temperatures. The particles showed a diameter, measured by STEM and dynamic light scattering technique (DLS), ranging from 10 to 60 nm. Surface plasmon resonance (SPR) was monitored by UV-VIS spectroscopy confirming its dependence by nanoparticles size and shape. Moreover the reaction yield has been assessed by ICP analysis performed on the unreacted metal cations. Finally, thermal conductivity and antibacterial activity characterizations of copper and silver sols respectively are now ongoing in order to check their application as nanofluid in heat transfer processes and as antibacterial agent.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Although nickel is a toxic metal for living organisms in its soluble form, its importance in many biological processes recently emerged. In this view, the investigation of the nickel-dependent enzymes urease and [NiFe]-hydrogenase, especially the mechanism of nickel insertion into their active sites, represent two intriguing case studies to understand other analogous systems and therefore to lead to a comprehension of the nickel trafficking inside the cell. Moreover, these two enzymes have been demonstrated to ensure survival and colonization of the human pathogen H. pylori, the only known microorganism able to proliferate in the gastric niche. The right nickel delivering into the urease active site requires the presence of at least four accessory proteins, UreD, UreE, UreF and UreG. Similarly, analogous process is principally mediated by HypA and HypB proteins in the [NiFe]-hydrogenase system. Indeed, HpHypA and HpHypB also have been proposed to act in the activation of the urease enzyme from H. pylori, probably mobilizing nickel ions from HpHypA to the HpUreE-HpUreG complex. A complete comprehension of the interaction mechanism between the accessory proteins and the crosstalk between urease and hydrogenase accessory systems requires the determination of the role of each protein chaperone that strictly depends on their structural and biochemical properties. The availability of HpUreE, HpUreG and HpHypA proteins in a pure form is a pre-requisite to perform all the subsequent protein characterizations, thus their purification was the first aim of this work. Subsequently, the structural and biochemical properties of HpUreE were investigated using multi-angle and quasi-elastic light scattering, as well as NMR and circular dichroism spectroscopy. The thermodynamic parameters of Ni2+ and Zn2+ binding to HpUreE were principally established using isothermal titration calorimetry and the importance of key histidine residues in the process of binding metal ions was studied using site-directed mutagenesis. The molecular details of the HpUreE-HpUreG and HpUreE-HpHypA protein-protein assemblies were also elucidated. The interaction between HpUreE and HpUreG was investigated using ITC and NMR spectroscopy, and the influence of Ni2+ and Zn2+ metal ions on the stabilization of this association was established using native gel electrophoresis, light scattering and thermal denaturation scanning followed by CD spectroscopy. Preliminary HpUreE-HpHypA interaction studies were conducted using ITC. Finally, the possible structural architectures of the two protein-protein assemblies were rationalized using homology modeling and docking computational approaches. All the obtained data were interpreted in order to achieve a more exhaustive picture of the urease activation process, and the correlation with the accessory system of the hydrogenase enzyme, considering the specific role and activity of the involved protein players. A possible function for Zn2+ in the chaperone network involved in Ni2+ trafficking and urease activation is also envisaged.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Nano(bio)science and nano(bio)technology play a growing and tremendous interest both on academic and industrial aspects. They are undergoing rapid developments on many fronts such as genomics, proteomics, system biology, and medical applications. However, the lack of characterization tools for nano(bio)systems is currently considered as a major limiting factor to the final establishment of nano(bio)technologies. Flow Field-Flow Fractionation (FlFFF) is a separation technique that is definitely emerging in the bioanalytical field, and the number of applications on nano(bio)analytes such as high molar-mass proteins and protein complexes, sub-cellular units, viruses, and functionalized nanoparticles is constantly increasing. This can be ascribed to the intrinsic advantages of FlFFF for the separation of nano(bio)analytes. FlFFF is ideally suited to separate particles over a broad size range (1 nm-1 μm) according to their hydrodynamic radius (rh). The fractionation is carried out in an empty channel by a flow stream of a mobile phase of any composition. For these reasons, fractionation is developed without surface interaction of the analyte with packing or gel media, and there is no stationary phase able to induce mechanical or shear stress on nanosized analytes, which are for these reasons kept in their native state. Characterization of nano(bio)analytes is made possible after fractionation by interfacing the FlFFF system with detection techniques for morphological, optical or mass characterization. For instance, FlFFF coupling with multi-angle light scattering (MALS) detection allows for absolute molecular weight and size determination, and mass spectrometry has made FlFFF enter the field of proteomics. Potentialities of FlFFF couplings with multi-detection systems are discussed in the first section of this dissertation. The second and the third sections are dedicated to new methods that have been developed for the analysis and characterization of different samples of interest in the fields of diagnostics, pharmaceutics, and nanomedicine. The second section focuses on biological samples such as protein complexes and protein aggregates. In particular it focuses on FlFFF methods developed to give new insights into: a) chemical composition and morphological features of blood serum lipoprotein classes, b) time-dependent aggregation pattern of the amyloid protein Aβ1-42, and c) aggregation state of antibody therapeutics in their formulation buffers. The third section is dedicated to the analysis and characterization of structured nanoparticles designed for nanomedicine applications. The discussed results indicate that FlFFF with on-line MALS and fluorescence detection (FD) may become the unparallel methodology for the analysis and characterization of new, structured, fluorescent nanomaterials.