16 resultados para DISCONTINUITY
em AMS Tesi di Dottorato - Alm@DL - Università di Bologna
Resumo:
In this work a multidisciplinary study of the December 26th, 2004 Sumatra earthquake has been carried out. We have investigated both the effect of the earthquake on the Earth rotation and the stress field variations associated with the seismic event. In the first part of the work we have quantified the effects of a water mass redistribution associated with the propagation of a tsunami wave on the Earth’s pole path and on the length-of-day (LOD) and applied our modeling results to the tsunami following the 2004 giant Sumatra earthquake. We compared the result of our simulations on the instantaneous rotational axis variations with some preliminary instrumental evidences on the pole path perturbation (which has not been confirmed yet) registered just after the occurrence of the earthquake, which showed a step-like discontinuity that cannot be attributed to the effect of a seismic dislocation. Our results show that the perturbation induced by the tsunami on the instantaneous rotational pole is characterized by a step-like discontinuity, which is compatible with the observations but its magnitude turns out to be almost one hundred times smaller than the detected one. The LOD variation induced by the water mass redistribution turns out to be not significant because the total effect is smaller than current measurements uncertainties. In the second part of this work of thesis we modeled the coseismic and postseismic stress evolution following the Sumatra earthquake. By means of a semi-analytical, viscoelastic, spherical model of global postseismic deformation and a numerical finite-element approach, we performed an analysis of the stress diffusion following the earthquake in the near and far field of the mainshock source. We evaluated the stress changes due to the Sumatra earthquake by projecting the Coulomb stress over the sequence of aftershocks taken from various catalogues in a time window spanning about two years and finally analyzed the spatio-temporal pattern. The analysis performed with the semi-analytical and the finite-element modeling gives a complex picture of the stress diffusion, in the area under study, after the Sumatra earthquake. We believe that the results obtained with the analytical method suffer heavily for the restrictions imposed, on the hypocentral depths of the aftershocks, in order to obtain the convergence of the harmonic series of the stress components. On the contrary we imposed no constraints on the numerical method so we expect that the results obtained give a more realistic description of the stress variations pattern.
Resumo:
Understanding the complex relationships between quantities measured by volcanic monitoring network and shallow magma processes is a crucial headway for the comprehension of volcanic processes and a more realistic evaluation of the associated hazard. This question is very relevant at Campi Flegrei, a volcanic quiescent caldera immediately north-west of Napoli (Italy). The system activity shows a high fumarole release and periodic ground slow movement (bradyseism) with high seismicity. This activity, with the high people density and the presence of military and industrial buildings, makes Campi Flegrei one of the areas with higher volcanic hazard in the world. In such a context my thesis has been focused on magma dynamics due to the refilling of shallow magma chambers, and on the geophysical signals detectable by seismic, deformative and gravimetric monitoring networks that are associated with this phenomenologies. Indeed, the refilling of magma chambers is a process frequently occurring just before a volcanic eruption; therefore, the faculty of identifying this dynamics by means of recorded signal analysis is important to evaluate the short term volcanic hazard. The space-time evolution of dynamics due to injection of new magma in the magma chamber has been studied performing numerical simulations with, and implementing additional features in, the code GALES (Longo et al., 2006), recently developed and still on the upgrade at the Istituto Nazionale di Geofisica e Vulcanologia in Pisa (Italy). GALES is a finite element code based on a physico-mathematical two dimensional, transient model able to treat fluids as multiphase homogeneous mixtures, compressible to incompressible. The fundamental equations of mass, momentum and energy balance are discretised both in time and space using the Galerkin Least-Squares and discontinuity-capturing stabilisation technique. The physical properties of the mixture are computed as a function of local conditions of magma composition, pressure and temperature.The model features enable to study a broad range of phenomenologies characterizing pre and sin-eruptive magma dynamics in a wide domain from the volcanic crater to deep magma feeding zones. The study of displacement field associated with the simulated fluid dynamics has been carried out with a numerical code developed by the Geophysical group at the University College Dublin (O’Brien and Bean, 2004b), with whom we started a very profitable collaboration. In this code, the seismic wave propagation in heterogeneous media with free surface (e.g. the Earth’s surface) is simulated using a discrete elastic lattice where particle interactions are controlled by the Hooke’s law. This method allows to consider medium heterogeneities and complex topography. The initial and boundary conditions for the simulations have been defined within a coordinate project (INGV-DPC 2004-06 V3_2 “Research on active volcanoes, precursors, scenarios, hazard and risk - Campi Flegrei”), to which this thesis contributes, and many researchers experienced on Campi Flegrei in volcanological, seismic, petrological, geochemical fields, etc. collaborate. Numerical simulations of magma and rock dynamis have been coupled as described in the thesis. The first part of the thesis consists of a parametric study aimed at understanding the eect of the presence in magma of carbon dioxide in magma in the convection dynamics. Indeed, the presence of this volatile was relevant in many Campi Flegrei eruptions, including some eruptions commonly considered as reference for a future activity of this volcano. A set of simulations considering an elliptical magma chamber, compositionally uniform, refilled from below by a magma with volatile content equal or dierent from that of the resident magma has been performed. To do this, a multicomponent non-ideal magma saturation model (Papale et al., 2006) that considers the simultaneous presence of CO2 and H2O, has been implemented in GALES. Results show that the presence of CO2 in the incoming magma increases its buoyancy force promoting convection ad mixing. The simulated dynamics produce pressure transients with frequency and amplitude in the sensitivity range of modern geophysical monitoring networks such as the one installed at Campi Flegrei . In the second part, simulations more related with the Campi Flegrei volcanic system have been performed. The simulated system has been defined on the basis of conditions consistent with the bulk of knowledge of Campi Flegrei and in particular of the Agnano-Monte Spina eruption (4100 B.P.), commonly considered as reference for a future high intensity eruption in this area. The magmatic system has been modelled as a long dyke refilling a small shallow magma chamber; magmas with trachytic and phonolitic composition and variable volatile content of H2O and CO2 have been considered. The simulations have been carried out changing the condition of magma injection, the system configuration (magma chamber geometry, dyke size) and the resident and refilling magma composition and volatile content, in order to study the influence of these factors on the simulated dynamics. Simulation results allow to follow each step of the gas-rich magma ascent in the denser magma, highlighting the details of magma convection and mixing. In particular, the presence of more CO2 in the deep magma results in more ecient and faster dynamics. Through this simulations the variation of the gravimetric field has been determined. Afterward, the space-time distribution of stress resulting from numerical simulations have been used as boundary conditions for the simulations of the displacement field imposed by the magmatic dynamics on rocks. The properties of the simulated domain (rock density, P and S wave velocities) have been based on data from literature on active and passive tomographic experiments, obtained through a collaboration with A. Zollo at the Dept. of Physics of the Federici II Univeristy in Napoli. The elasto-dynamics simulations allow to determine the variations of the space-time distribution of deformation and the seismic signal associated with the studied magmatic dynamics. In particular, results show that these dynamics induce deformations similar to those measured at Campi Flegrei and seismic signals with energies concentrated on the typical frequency bands observed in volcanic areas. The present work shows that an approach based on the solution of equations describing the physics of processes within a magmatic fluid and the surrounding rock system is able to recognise and describe the relationships between geophysical signals detectable on the surface and deep magma dynamics. Therefore, the results suggest that the combined study of geophysical data and informations from numerical simulations can allow in a near future a more ecient evaluation of the short term volcanic hazard.
Resumo:
In this work we study the relation between crustal heterogeneities and complexities in fault processes. The first kind of heterogeneity considered involves the concept of asperity. The presence of an asperity in the hypocentral region of the M = 6.5 earthquake of June 17-th, 2000 in the South Iceland Seismic Zone was invoked to explain the change of seismicity pattern before and after the mainshock: in particular, the spatial distribution of foreshock epicentres trends NW while the strike of the main fault is N 7◦ E and aftershocks trend accordingly; the foreshock depths were typically deeper than average aftershock depths. A model is devised which simulates the presence of an asperity in terms of a spherical inclusion, within a softer elastic medium in a transform domain with a deviatoric stress field imposed at remote distances (compressive NE − SW, tensile NW − SE). An isotropic compressive stress component is induced outside the asperity, in the direction of the compressive stress axis, and a tensile component in the direction of the tensile axis; as a consequence, fluid flow is inhibited in the compressive quadrants while it is favoured in tensile quadrants. Within the asperity the isotropic stress vanishes but the deviatoric stress increases substantially, without any significant change in the principal stress directions. Hydrofracture processes in the tensile quadrants and viscoelastic relaxation at depth may contribute to lower the effective rigidity of the medium surrounding the asperity. According to the present model, foreshocks may be interpreted as induced, close to the brittle-ductile transition, by high pressure fluids migrating upwards within the tensile quadrants; this process increases the deviatoric stress within the asperity which eventually fails, becoming the hypocenter of the mainshock, on the optimally oriented fault plane. In the second part of our work we study the complexities induced in fault processes by the layered structure of the crust. In the first model proposed we study the case in which fault bending takes place in a shallow layer. The problem can be addressed in terms of a deep vertical planar crack, interacting with a shallower inclined planar crack. An asymptotic study of the singular behaviour of the dislocation density at the interface reveals that the density distribution has an algebraic singularity at the interface of degree ω between -1 and 0, depending on the dip angle of the upper crack section and on the rigidity contrast between the two media. From the welded boundary condition at the interface between medium 1 and 2, a stress drop discontinuity condition is obtained which can be fulfilled if the stress drop in the upper medium is lower than required for a planar trough-going surface: as a corollary, a vertically dipping strike-slip fault at depth may cross the interface with a sedimentary layer, provided that the shallower section is suitably inclined (fault "refraction"); this results has important implications for our understanding of the complexity of the fault system in the SISZ; in particular, we may understand the observed offset of secondary surface fractures with respect to the strike direction of the seismic fault. The results of this model also suggest that further fractures can develop in the opposite quadrant and so a second model describing fault branching in the upper layer is proposed. As the previous model, this model can be applied only when the stress drop in the shallow layer is lower than the value prescribed for a vertical planar crack surface. Alternative solutions must be considered if the stress drop in the upper layer is higher than in the other layer, which may be the case when anelastic processes relax deviatoric stress in layer 2. In such a case one through-going crack cannot fulfil the welded boundary conditions and unwelding of the interface may take place. We have solved this problem within the theory of fracture mechanics, employing the boundary element method. The fault terminates against the interface in a T-shaped configuration, whose segments interact among each other: the lateral extent of the unwelded surface can be computed in terms of the main fault parameters and the stress field resulting in the shallower layer can be modelled. A wide stripe of high and nearly uniform shear stress develops above the unwelded surface, whose width is controlled by the lateral extension of unwelding. Secondary shear fractures may then open within this stripe, according to the Coulomb failure criterion, and the depth of open fractures opening in mixed mode may be computed and compared with the well studied fault complexities observed in the field. In absence of the T-shaped decollement structure, stress concentration above the seismic fault would be difficult to reconcile with observations, being much higher and narrower.
Resumo:
This PhD thesis aims at providing an evaluation of EU Cohesion policy impact on regional growth. It employs methodologies and data sources never before applied for this purpose. Main contributions to the literature concerning EU regional policy effectiveness have been extensively analysed. Moreover, having carried out an overview of the current literature on Cohesion Policy, we deduce that this work introduces innovative features in the field. The work enriches the current literature with regards to two aspects. The first aspect concerns the use of the instrument of Regression Discontinuity Design in order to examine the presence of a different outcome in terms of growth between Objectives 1 regions and non-Objective 1 regions at the cut-off point (75 percent of EU-15 GDP per capita in PPS) during the two programming periods, 1994-1999 and 2000-2006. The results confirm a significant difference higher than 0.5 percent per year between the two groups. The other empirical evaluation regards the study of a cross-section regression model based on the convergence theory that analyses the dependence relation between regional per capita growth and EU Cohesion policy expenditure in several fields of interventions. We have built a very fine dataset of spending variables (certified expenditure), using sources of data directly provided from the Regional Policy Directorate of the European Commission.
Resumo:
An integrated array of analytical methods -including clay mineralogy, vitrinite reflectance, Raman spectroscopy on carbonaceous material, and apatite fission-track analysis- was employed to constrain the thermal and thermochronological evolution of selected portions of the Pontides of northern Turkey. (1) A multimethod investigation was applied for the first time to characterise the thermal history of the Karakaya Complex, a Permo-Triassic subduction-accretion complex cropping out throughout the Sakarya Zone. The results indicate two different thermal regimes: the Lower Karakaya Complex (Nilüfer Unit) -mostly made of metabasite and marble- suffered peak temperatures of 300-500°C (greenschist facies); the Upper Karakaya Complex (Hodul and the Orhanlar Units) –mostly made of greywacke and arkose- yielded heterogeneous peak temperatures (125-376°C), possibly the result of different degree of involvement of the units in the complex dynamic processes of the accretionary wedge. Contrary to common belief, the results of this study indicate that the entire Karakaya Complex suffered metamorphic conditions. Moreover, a good degree of correlation among the results of these methods demonstrate that Raman spectroscopy on carbonaceous material can be applied successfully to temperature ranges of 200-330°C, thus extending the application of this method from higher grade metamorphic contexts to lower grade metamorphic conditions. (2) Apatite fission-track analysis was applied to the Sakarya and the İstanbul Zones in order to constrain the exhumation history and timing of amalgamation of these two exotic terranes. AFT ages from the İstanbul and Sakarya terranes recorded three distinct episodes of exhumation related to the complex tectonic evolution of the Pontides. (i) Paleocene - early Eocene ages (62.3-50.3 Ma) reflect the closure of the İzmir-Ankara ocean and the ensuing collision between the Sakarya terrane and the Anatolide-Tauride Block. (ii) Late Eocene - earliest Oligocene (43.5-32.3 Ma) ages reflect renewed tectonic activity along the İzmir-Ankara. (iii) Late Oligocene- Early Miocene ages reflect the onset and development of the northern Aegean extension. The consistency of AFT ages, both north and south of the tectonic contact between the İstanbul and Sakarya terranes, suggest that such terranes were amalgamated in pre-Cenozoic times. (3) Fission-track analysis was also applied to rock samples from the Marmara region, in an attempt to constrain the inception and development of the North Anatolian Fault system in the region. The results agree with those from the central Pontides. The youngest AFT ages (Late Oligocene - early Miocene) were recorded in the western portion of the Marmara Sea region and reflect the onset and development of northern Aegean extension. Fission-track data from the eastern Marmara Sea region indicate rapid Early Eocene exhumation induced by the development of the İzmir-Ankara orogenic wedge. Thermochronological data along the trace of the Ganos Fault –a segment of the North Anatolian Fault system- indicate the presence of a tectonic discontinuity active by Late Oligocene time, i.e. well before the arrival of the North Anatolian Fault system in the area. The integration of thermochronologic data with preexisting structural data point to the existence of a system of major E-W-trending structural discontinuities active at least from the Late Oligocene. In the Early Pliocene, inception of the present-day North Anatolian Fault system in the Marmara region occurred by reactivation of these older tectonic structures.
Resumo:
In this thesis Marsili back-arc basin and Palinuro Volcanic Complex (Southern Tyrrhenian Sea) have been investigated by using magnetic, bathymetric and gravimetric data. A new velocity model of opening of the Marsili basin has been proposed, highlighting the transition from the horizontal spreading of the back-arc to the vertical accretion of the Marsili seamount. Introducing gravity data, Marsili's internal structure has been modeled and a huge portion of the volcano with low density and vanishing magnetization has been detected. Forward modeling of Palinuro Volcanic Complex showed as Palinuro represents the shallowest evidence of a deep tectonic discontinuity and the possible transition domain between the oceanic crust of Marsili Basin and the continental crust related to the Appenninic chain.
Resumo:
Persistent Topology is an innovative way of matching topology and geometry, and it proves to be an effective mathematical tool in shape analysis. In order to express its full potential for applications, it has to interface with the typical environment of Computer Science: It must be possible to deal with a finite sampling of the object of interest, and with combinatorial representations of it. Following that idea, the main result claims that it is possible to construct a relation between the persistent Betti numbers (PBNs; also called rank invariant) of a compact, Riemannian submanifold X of R^m and the ones of an approximation U of X itself, where U is generated by a ball covering centered in the points of the sampling. Moreover we can state a further result in which, this time, we relate X with a finite simplicial complex S generated, thanks to a particular construction, by the sampling points. To be more precise, strict inequalities hold only in "blind strips'', i.e narrow areas around the discontinuity sets of the PBNs of U (or S). Out of the blind strips, the values of the PBNs of the original object, of the ball covering of it, and of the simplicial complex coincide, respectively.
Strategy as a matter of beliefs: the recorded music industry reinventing itself by rethinking itself
Resumo:
Managerial and organizational cognition studies the ways cognitions of managers in groups, organizations and industries shape their strategies and actions. Cognitions refer to simplified representations of managers’ internal and external environments, necessary to cope with the rich, ambiguous information requirements that characterize strategy making. Despite the important achievements in the field, many unresolved puzzles remain as to this process, particular as to the cognitive factors that condition actors in framing a response to a discontinuity, how actors can change their models in the face of a discontinuity, and the reciprocal relation between cognition and action. I leverage on the recent case of the recorded music industry in the face of the digital technology to study these issues, through a strategy-oriented study of the way early response to the discontinuity was constructed and of the subsequent evolution of this response. Through a longitudinal historical and cognitive analysis of actions and cognitions at both the industry and firm-level during the period in which the response took place (1999-2010), I gain important insights on the way historical beliefs in the industry shaped early response to the digital disruption, on the role of outsiders in promoting change through renewed vision about important issues, and on the reciprocal relationship between cognitive and strategic change.
Resumo:
The primary objective of this thesis is to obtain a better understanding of the 3D velocity structure of the lithosphere in central Italy. To this end, I adopted the Spectral-Element Method to perform accurate numerical simulations of the complex wavefields generated by the 2009 Mw 6.3 L’Aquila event and by its foreshocks and aftershocks together with some additional events within our target region. For the mainshock, the source was represented by a finite fault and different models for central Italy, both 1D and 3D, were tested. Surface topography, attenuation and Moho discontinuity were also accounted for. Three-component synthetic waveforms were compared to the corresponding recorded data. The results of these analyses show that 3D models, including all the known structural heterogeneities in the region, are essential to accurately reproduce waveform propagation. They allow to capture features of the seismograms, mainly related to topography or to low wavespeed areas, and, combined with a finite fault model, result into a favorable match between data and synthetics for frequencies up to ~0.5 Hz. We also obtained peak ground velocity maps, that provide valuable information for seismic hazard assessment. The remaining differences between data and synthetics led us to take advantage of SEM combined with an adjoint method to iteratively improve the available 3D structure model for central Italy. A total of 63 events and 52 stations in the region were considered. We performed five iterations of the tomographic inversion, by calculating the misfit function gradient - necessary for the model update - from adjoint sensitivity kernels, constructed using only two simulations for each event. Our last updated model features a reduced traveltime misfit function and improved agreement between data and synthetics, although further iterations, as well as refined source solutions, are necessary to obtain a new reference 3D model for central Italy tomography.
Resumo:
This thesis tackles the problem of the automated detection of the atmospheric boundary layer (BL) height, h, from aerosol lidar/ceilometer observations. A new method, the Bayesian Selective Method (BSM), is presented. It implements a Bayesian statistical inference procedure which combines in an statistically optimal way different sources of information. Firstly atmospheric stratification boundaries are located from discontinuities in the ceilometer back-scattered signal. The BSM then identifies the discontinuity edge that has the highest probability to effectively mark the BL height. Information from the contemporaneus physical boundary layer model simulations and a climatological dataset of BL height evolution are combined in the assimilation framework to assist this choice. The BSM algorithm has been tested for four months of continuous ceilometer measurements collected during the BASE:ALFA project and is shown to realistically diagnose the BL depth evolution in many different weather conditions. Then the BASE:ALFA dataset is used to investigate the boundary layer structure in stable conditions. Functions from the Obukhov similarity theory are used as regression curves to fit observed velocity and temperature profiles in the lower half of the stable boundary layer. Surface fluxes of heat and momentum are best-fitting parameters in this exercise and are compared with what measured by a sonic anemometer. The comparison shows remarkable discrepancies, more evident in cases for which the bulk Richardson number turns out to be quite large. This analysis supports earlier results, that surface turbulent fluxes are not the appropriate scaling parameters for profiles of mean quantities in very stable conditions. One of the practical consequences is that boundary layer height diagnostic formulations which mainly rely on surface fluxes are in disagreement to what obtained by inspecting co-located radiosounding profiles.
Resumo:
The primary goal of volcanological studies is to reconstruct the eruptive history of active volcanoes, by correlating and dating volcanic deposits, in order to depict a future scenario and determine the volcanic hazard of an area. However, alternative methods are necessary where the lack of outcrops, the deposit variability and discontinuity make the correlation difficult, and suitable materials for an accurate dating lack. In this thesis, paleomagnetism (a branch of Geophysics studying the remanent magnetization preserved in rocks) is used as a correlating and dating tool. The correlation is based on the assumption that coeval rocks record similar paleomagnetic directions; the dating relies upon the comparison between paleomagnetic directions recorded by rocks with the expected values from references Paleo-Secular Variation curves (PSV, the variation of the geomagnetic field along time). I first used paleomagnetism to refine the knowledge of the pre – 50 ka geologic history of the Pantelleria island (Strait of Sicily, Italy), by correlating five ignimbrites and two breccias deposits emplaced during that period. Since the use of the paleomagnetic dating is limited by the availability of PSV curves for the studied area, I firstly recovered both paleomagnetic directions and intensities (using a modified Thellier method) from radiocarbon dated lava flows in São Miguel (Azores Islands, Portugal), reconstructing the first PSV reference curve for the Atlantic Ocean for the last 3 ka. Afterwards, I applied paleomagnetism to unravel the chronology and characteristics of Holocene volcanic activity at Faial (Azores) where geochronological age constraints lack. I correlated scoria cones and lava flows yielded by the same eruption on the Capelo Peninsula and dated eruptive events (by comparing paleomagnetic directions with PSV from France and United Kingdom), finding that the volcanics exposed at the Capelo Peninsula are younger than previously believed, and entirely comprised in the last 4 ka.
Resumo:
La ricerca muove dal presupposto che l’opera di Aldo Rossi sia stata analizzata finora secondo un criterio tipologico. Tale approccio è una tra le possibili chiavi di lettura del lavoro dell’architetto. Nel tentativo di individuare un’interpretazione dell’opera di Rossi legata a sistemi immutabili nel tempo si è ritenuto necessario approfondire la relazione che si stabilisce tra la sua opera e il suolo. Attraverso la definizione di due categorie di lettura dei progetti dell’autore, che si basano su continuità o discontinuità fisica del progetto rispetto al suolo, si comprende come il rapporto tra area e progetto produca nel tempo soluzioni ricorrenti. In base a questa interpretazione muro e pilastro costituiscono due elementi fondamentali del linguaggio di Rossi. Essi a loro volta si allacciano ad un sistema di riferimento più ampio di cui tettonica e arte muraria sono i capisaldi. La ricerca si articola in tre parti, all’interno delle quali sono sviluppati specifici capitoli. La prima parte, sistema di riferimento, è necessaria a delineare un vocabolario utile per isolare il tema trattato. Essa è fondamentale per comprendere la posizione occupata da Rossi rispetto alle esperienze verificatesi nel corso della storia, relativamente al rapporto spazio - architettura - suolo. La seconda parte, arte muraria, serve a mettere in luce l’influenza che la componente massiva e plastica del terreno ha determinato nella definizione di specifiche soluzioni progettuali. La terza parte, tettonica, delinea invece un approccio opposto al precedente, individuando quei progetti in cui il rapporto col suolo è stato sminuito o addirittura negato, aumentando il senso di sospensione dei volumi nello spazio. In definitiva, l’influenza che il rapporto col suolo ha determinato sulle scelte progettuali di Rossi rappresenta l’interrogativo principale di questa ricerca.
Resumo:
Oggetto della ricerca è il museo Wilhelm Lehmbruck di Duisburg, un'opera dell'architetto Manfred Lehmbruck, progettata e realizzata tra il 1957 e il 1964. Questa architettura, che ospita la produzione artistica del noto scultore Wilhelm Lehmbruck, padre di Manfred, è tra i primi musei edificati ex novo nella Repubblica Federale Tedesca dopo la seconda guerra mondiale. Il mito di Wilhelm Lehmbruck, costruito negli anni per donare una identità culturale alla città industriale di Duisburg, si rinvigorì nel secondo dopoguerra in seno ad una più generale tendenza sorta nella Repubblica di Bonn verso la rivalutazione dell'arte moderna, dichiarata “degenerata” dal nazionalsocialismo. Ricollegarsi all'arte e all'architettura moderna degli anni venti era in quel momento funzionale al ridisegno di un volto nuovo e democratico del giovane stato tedesco, che cercava legittimazione proclamandosi erede della mitica e gloriosa Repubblica di Weimar. Dopo anni di dibattiti sulla ricostruzione, l'architettura del neues Bauen sembrava l'unico modo in cui la Repubblica Federale potesse presentarsi al mondo, anche se la realtà del paese era assai più complessa e svelava il “doppio volto” che connotò questo stato a partire dal 1945. Le numerose dicotomie che popolarono presto la tabula rasa nata dalle ceneri del conflitto (memoria/oblio, tradizione/modernità, continuità/discontinuità con il recente e infausto passato) trovano espressione nella storia e nella particolare architettura del museo di Duisburg, che può essere quindi interpretato come un'opera paradigmatica per comprendere la nuova identità della Repubblica Federale, un'identità che la rese capace di risorgere dopo l' “anno zero”, ricercando nel miracolo economico uno strumento di redenzione da un passato vergognoso, che doveva essere taciuto, dimenticato, lasciato alle spalle.
Resumo:
This dissertation consists of three empirical studies that aim at providing new evidence in the field of public policy evaluation. In particular, the first two chapters focus on the effects of the European cohesion policy, while the third chapter assesses the effectiveness of Italian labour market incentives in reducing long-term unemployment. The first study analyses the effect of EU funds on life satisfaction across European regions , under the assumption that projects financed by structural funds in the fields of employment, education, health and environment may affect the overall quality of life in recipient regions. Using regional data from the European Social Survey in 2002-2006, it resorts to a regression discontinuity design, where the discontinuity is provided by the institutional framework of the policy. The second study aims at estimating the impact of large transfers from a centralized authority to a local administration on the incidence of white collar crimes. It merges a unique dataset on crimes committed in Italian municipalities between 2007 and 2011 with information on the disbursement of EU structural funds in 2007-2013 programming period, employing an instrumental variable estimation strategy that exploits the variation in the electoral cycle at local level. The third study analyses the impact of an Italian labour market policy that allowed firms to cut their labour costs on open-ended job contracts when hiring long-term unemployed workers. It takes advantage of a unique dataset that draws information from the unemployment lists in Veneto region and it resorts to a regression discontinuity approach to estimate the effect of the policy on the job finding rate of long-term unemployed workers.