7 resultados para DFT piperidine morpholine computational study diastereoselection chemodivergent synthesis
em AMS Tesi di Dottorato - Alm@DL - Università di Bologna
Resumo:
In the post genomic era with the massive production of biological data the understanding of factors affecting protein stability is one of the most important and challenging tasks for highlighting the role of mutations in relation to human maladies. The problem is at the basis of what is referred to as molecular medicine with the underlying idea that pathologies can be detailed at a molecular level. To this purpose scientific efforts focus on characterising mutations that hamper protein functions and by these affect biological processes at the basis of cell physiology. New techniques have been developed with the aim of detailing single nucleotide polymorphisms (SNPs) at large in all the human chromosomes and by this information in specific databases are exponentially increasing. Eventually mutations that can be found at the DNA level, when occurring in transcribed regions may then lead to mutated proteins and this can be a serious medical problem, largely affecting the phenotype. Bioinformatics tools are urgently needed to cope with the flood of genomic data stored in database and in order to analyse the role of SNPs at the protein level. In principle several experimental and theoretical observations are suggesting that protein stability in the solvent-protein space is responsible of the correct protein functioning. Then mutations that are found disease related during DNA analysis are often assumed to perturb protein stability as well. However so far no extensive analysis at the proteome level has investigated whether this is the case. Also computationally methods have been developed to infer whether a mutation is disease related and independently whether it affects protein stability. Therefore whether the perturbation of protein stability is related to what it is routinely referred to as a disease is still a big question mark. In this work we have tried for the first time to explore the relation among mutations at the protein level and their relevance to diseases with a large-scale computational study of the data from different databases. To this aim in the first part of the thesis for each mutation type we have derived two probabilistic indices (for 141 out of 150 possible SNPs): the perturbing index (Pp), which indicates the probability that a given mutation effects protein stability considering all the “in vitro” thermodynamic data available and the disease index (Pd), which indicates the probability of a mutation to be disease related, given all the mutations that have been clinically associated so far. We find with a robust statistics that the two indexes correlate with the exception of all the mutations that are somatic cancer related. By this each mutation of the 150 can be coded by two values that allow a direct comparison with data base information. Furthermore we also implement computational methods that starting from the protein structure is suited to predict the effect of a mutation on protein stability and find that overpasses a set of other predictors performing the same task. The predictor is based on support vector machines and takes as input protein tertiary structures. We show that the predicted data well correlate with the data from the databases. All our efforts therefore add to the SNP annotation process and more importantly found the relationship among protein stability perturbation and the human variome leading to the diseasome.
Resumo:
The research work reported in this Thesis was held along two main lines of research. The first and main line of research is about the synthesis of heteroaromatic compounds with increasing steric hindrance, with the aim of preparing stable atropisomers. The main tools used for the study of these dynamic systems, as described in the Introduction, are DNMR, coupled with line shape simulation and DFT calculations, aimed to the conformational analysis for the prediction of the geometries and energy barriers to the trasition states. This techniques have been applied to the research projects about: • atropisomers of arylmaleimides; • atropisomers of 4-arylpyrazolo[3,4-b]pyridines; • study of the intramolecular NO2/CO interaction in solution; • study on 2-arylpyridines. Parallel to the main project, in collaboration with other groups, the research line about determination of the absolute configuration was followed. The products, deriving form organocatalytic reactions, in many cases couldn’t be analyzed by means of X-Ray diffraction, making necessary the development of a protocol based on spectroscopic methodologies: NMR, circular dichroism and computational tools (DFT, TD-DFT) have been implemented in this scope. In this Thesis are reported the determination of the absolute configuration of: • substituted 1,2,3,4-tetrahydroquinolines; • compounds from enantioselective Friedel-Crafts alkylation-acetalization cascade of naphthols with α,β-unsaturated cyclic ketones; • substituted 3,4-annulated indoles.
Resumo:
The aim of my PhD research project was to investigate new and more sustainable routes, compared to those currently used, for the production of adipic acid (AA). AA is a very important chemical intermediate. The main use of AA is the production of Nylon-6,6 fibers, resins, polyesters, plasticizers. My project was divided into two parts: 1. The two-step oxidation of cyclohexene, where the latter is first oxidized into trans-1,2-cyclohexanediol (CHD) with aqueous hydrogen peroxide, and then the glycol is transformed into AA by reaction with molecular oxygen. Various catalysts were investigated in this process, both heterogeneous (alumina-supported Ru(OH)x and Au nanoparticles supported on TiO2, MgO and Mg(OH)2) and homogeneous (polyoxometalates). We also studied the mechanism of CHD oxidation with oxygen in the presence of these catalysts. 2. Baeyer-Villiger oxidation of cyclohexanone with aqueous hydrogen peroxide into ɛ-caprolactone, as a first step on the way to produce AA. Study on the mechanism of the uncatalyzed (thermal) oxidation of cyclohexanone were also carried out. Investigation on how the different heterogeneous catalysts affect the formation of the reaction products and their distribution was done.
The synthesis of maleic anhydride: study of a new process and improvement of the industrial catalyst
Resumo:
Maleic anhydride is an important chemical intermediate mainly produced by the selective oxidation of n-butane, an industrial process catalyzed by vanadyl pyrophosphate-based materials, (VO)2P2O7. The first topic was investigated in collaboration with a company specialized in the production of organic anhydrides (Polynt SpA), with the aim of improving the performance of the process for the selective oxidation of n-butane to maleic anhydride, comparing the behavior of an industrial vanadyl pyrophosphate catalysts when utilized either in the industrial plant or in lab-scale reactor. The study was focused on how the catalyst characteristics and reactivity are affected by the reaction conditions and how the addition of a dopant can enhance the catalytic performance. Moreover, the ageing of the catalyst was studied, in order to correlate the deactivation process with the modifications occurring in the catalyst. The second topic was produced within the Seventh Framework (FP7) European Project “EuroBioRef”. The study was focused on a new route for the synthesis of maleic anhydride starting from an alternative reactant produced by fermentation of biomass:“bio-1-butanol”. In this field, the different possible catalytic configurations were investigated: the process was divided into two main reactions, the dehydration of 1-butanol to butenes and the selective oxidation of butenes to maleic anhydride. The features needed to catalyze the two steps were analyzed and different materials were proposed as catalysts, namely Keggin-type polyoxometalates, VOPO4∙2H2O and (VO)2P2O7. The reactivity of 1-butanol was tested under different conditions, in order to optimize the performance and understand the nature of the interaction between the alcohol and the catalyst surface. Then, the key intermediates in the mechanism of 1-butanol oxidehydration to MA were studied, with the aim of understanding the possible reaction mechanism. Lastly, the reactivity of the chemically sourced 1-butanol was compared with that one of different types of bio-butanols produced by biomass fermentation.
Resumo:
Catalysis plays a vital role in modern synthetic chemistry. However, even if conventional catalysis (organo-catalysis, metal-catalysis and enzyme-catalysis) has provided outstanding results, various unconventional ways to make chemical reactions more effective appear now very promising. Computational methods can be of great help to reach a deeper comprehension of these chemical processes. The methodologies employed in this thesis are Quantum-Mechanical (QM), Molecular Mechanics (MM) and hybrid Quantum-Mechanical/Molecular Mechanics (QM/MM) methods. In this abstract the results are briefly summarised. The first unconventional catalysis investigated consists in the application of Oriented External Electric Fields (OEEFs) to SN2 and 4e-electrocyclic reactions. SN2 reactions with back-side mechanism can be catalysed or inhibited by the presence of an OEEF. Moreover, OEEFs can inhibit back-side mechanism (Walden inversion of configuration) and promote the naturally unfavoured front-side mechanism (retention of configuration). Electrocyclic ring opening reaction of 3-substituted cyclobutene molecules can occur with inward or outward mechanisms depending on the nature of substituent groups on the cyclobutene structure (torquoselectivity principle). OEEFs can catalyse the naturally favoured pathway or circumvent the torquoselectivity principle leading to different stereoisomers. The second case study is based on Carbon Nanotubes (CNTs) working as nano-reactors: the reaction of ethyl chloride with chloride anion inside CNTs was investigated. In addition to the SN2 mechanism, syn and anti-E2 reactions are possible. These reactions inside CNTs of different radii were examined with hybrid QM/MM methods, finding that these processes can be both catalysed and inhibited by the CNT diameter. The results suggest that electrostatic effects govern the activation energy variations inside CNTs. Finally, a new biochemical approach, based on the use of DNA catalyst was investigated at QM level. Deoxyribozyme 9DB1 catalyses the RNA ligation allowing the regioselective formation of the 3'-5' bond, following an addition-elimination two-step mechanism.
Resumo:
Neuroinflammation represents a key hallmark of neurodegenerative diseases and is the result of a complex network of signaling cascades within microglial cells. A positive feedback loop exists between inflammation, microglia activation and protein misfolding processes, that, together with oxidative stress and excitotoxicity, lead to neuronal degeneration. Therefore, targeting this vicious cycle can be beneficial for mitigating neurodegeneration and cognitive decline in central nervous system disorders. At molecular level, GSK-3B and Fyn kinases play a crucial role in microglia activation and their deregulation has been associated to many neurodegenerative diseases. Thus, we envisioned their combined targeting as an effective approach to disrupt this toxic loop. Specifically in this project, a hit compound, based on a 7-azaindole-3-aminothiazole structure, was first identified in a virtual screening campaign, and displayed a weak dual inhibitory activity on GSK-3B and Fyn, unbalanced towards the former. Then, in a commitment to uncover the structural features required for modulating the activity on the two targets, we systematically manipulated this compound by inserting various substitution patterns in different positions. The most potent compounds obtained were advanced to deeper investigations to test their ability of tackling the inflammatory burden also in cellular systems and to unveil their binding modes within the catalytic pocket. The new class of molecules synthesized emerged as a valuable tool to deepen our understanding of the complex network governing the inflammatory events in neurodegenerative disorders.
Resumo:
My PhD research focused on the development of environmentally sustainable methods for peptide synthesis. The traditional and toxic solvents and bases used in solid-phase peptide synthesis (SPPS) were replaced with eco-friendly alternatives to reduce the environmental impact. In particular, N-octylpyrrolidone was found to be an effective green solvent in combination with dimethyl carbonate, resulting in a 63-66% reduction in process mass intensity (PMI). In addition, a green base, DEAPA, was identified for Fmoc removal, which showed comparable results to piperidine, while being less regulated and toxic, and able to better control aspartimide-related side reactions. The study extended beyond SPPS to explore liquid-phase peptide synthesis (LPPS) and solution-phase peptide synthesis (SolPPS) using propylphosphonic anhydride (T3P®) as a coupling reagent. The developed green SolPPS using Cbz amino acids achieved exceptional efficiency, minimal racemisation and a PMI of 30 to introduce a single amino acid in the iterative process. This PMI value is the lowest ever reported for an oligopeptide synthesis protocol. This technique was extended to N-Boc amino acids in DCM, requiring aqueous workups and achieving 95% purity of Leu-Enkephalin. Finally, T3P® was found to be suitable for LPPS. An anchor, mimicking a resin, was used to allow precipitation or solubilisation of the growing anchored-peptide, depending on the polarity of the solvent used. Anisole and DCM resulted in a pentapeptide purity of over 95%. While at Oxford University, I synthesized a cleavable fragment that is sensitive to cathepsin B (CatB) and incorporated it into a cyclic antisense oligonucleotide (ASO) targeting the metastasis-associated lung adenocarcinoma transcript 1 (MALAT1). ASO demonstrated good stability in a simulated in vivo environment using human serum and high affinity with complementary RNA. The Cyclic-ASO was opened by CatB in optimal conditions. Experiments highlight therapeutic potential and a novel method for controlling cyclic oligonucleotide activity, potentially enhancing cellular uptake.