3 resultados para DEGRADATION-PRODUCTS
em AMS Tesi di Dottorato - Alm@DL - Università di Bologna
Resumo:
Research in art conservation has been developed from the early 1950s, giving a significant contribution to the conservation-restoration of cultural heritage artefacts. In fact, only through a profound knowledge about the nature and conditions of constituent materials, suitable decisions on the conservation and restoration measures can thus be adopted and preservation practices enhanced. The study of ancient artworks is particularly challenging as they can be considered as heterogeneous and multilayered systems where numerous interactions between the different components as well as degradation and ageing phenomena take place. However, difficulties to physically separate the different layers due to their thickness (1-200 µm) can result in the inaccurate attribution of the identified compounds to a specific layer. Therefore, details can only be analysed when the sample preparation method leaves the layer structure intact, as for example the preparation of embedding cross sections in synthetic resins. Hence, spatially resolved analytical techniques are required not only to exactly characterize the nature of the compounds but also to obtain precise chemical and physical information about ongoing changes. This thesis focuses on the application of FTIR microspectroscopic techniques for cultural heritage materials. The first section is aimed at introducing the use of FTIR microscopy in conservation science with a particular attention to the sampling criteria and sample preparation methods. The second section is aimed at evaluating and validating the use of different FTIR microscopic analytical methods applied to the study of different art conservation issues which may be encountered dealing with cultural heritage artefacts: the characterisation of the artistic execution technique (chapter II-1), the studies on degradation phenomena (chapter II-2) and finally the evaluation of protective treatments (chapter II-3). The third and last section is divided into three chapters which underline recent developments in FTIR spectroscopy for the characterisation of paint cross sections and in particular thin organic layers: a newly developed preparation method with embedding systems in infrared transparent salts (chapter III-1), the new opportunities offered by macro-ATR imaging spectroscopy (chapter III-2) and the possibilities achieved with the different FTIR microspectroscopic techniques nowadays available (chapter III-3). In chapter II-1, FTIR microspectroscopy as molecular analysis, is presented in an integrated approach with other analytical techniques. The proposed sequence is optimized in function of the limited quantity of sample available and this methodology permits to identify the painting materials and characterise the adopted execution technique and state of conservation. Chapter II-2 describes the characterisation of the degradation products with FTIR microscopy since the investigation on the ageing processes encountered in old artefacts represents one of the most important issues in conservation research. Metal carboxylates resulting from the interaction between pigments and binding media are characterized using synthesised metal palmitates and their production is detected on copper-, zinc-, manganese- and lead- (associated with lead carbonate) based pigments dispersed either in oil or egg tempera. Moreover, significant effects seem to be obtained with iron and cobalt (acceleration of the triglycerides hydrolysis). For the first time on sienna and umber paints, manganese carboxylates are also observed. Finally in chapter II-3, FTIR microscopy is combined with further elemental analyses to characterise and estimate the performances and stability of newly developed treatments, which should better fit conservation-restoration problems. In the second part, in chapter III-1, an innovative embedding system in potassium bromide is reported focusing on the characterisation and localisation of organic substances in cross sections. Not only the identification but also the distribution of proteinaceous, lipidic or resinaceous materials, are evidenced directly on different paint cross sections, especially in thin layers of the order of 10 µm. Chapter III-2 describes the use of a conventional diamond ATR accessory coupled with a focal plane array to obtain chemical images of multi-layered paint cross sections. A rapid and simple identification of the different compounds is achieved without the use of any infrared microscope objectives. Finally, the latest FTIR techniques available are highlighted in chapter III-3 in a comparative study for the characterisation of paint cross sections. Results in terms of spatial resolution, data quality and chemical information obtained are presented and in particular, a new FTIR microscope equipped with a linear array detector, which permits reducing the spatial resolution limit to approximately 5 µm, provides very promising results and may represent a good alternative to either mapping or imaging systems.
Resumo:
Lo scopo di questo lavoro di tesi è la caratterizzazione dei prodotti di ossidazione di diversi fenoli idrofili contenuti nell’olio vergine d’oliva come idrossitirosolo, tirosolo e la forma dialdeidica dell’acido decarbossimetil elenolico legato all’idrossitirosolo, e la loro identificazione nel prodotto durante la conservazione. L’obiettivo della ricerca è trovare degli indici analitici che possono essere usati sia come marker di “freschezza” dell’olio vergine di oliva sia nella valutazione della “shelf life” del prodotto stesso. Due sistemi di ossidazione sono stati usati per ossidare le molecole sopracitate: ossidazione enzimatica e ossidazione di Fenton. I prodotti di ossidazione sono stati identificati come chinoni, dimeri e acidi.
Resumo:
This experimental thesis concerns the study of the long-term behaviour of ancient bronzes recently excavated from burial conditions. The scientific interest is to clarify the effect of soil parameters on the degradation mechanisms of ancient bronze alloy. The work took into consideration bronzes recovered from the archaeological sites in the region of Dobrudja, Romania. The first part of research work was dedicated to the characterization of bronze artefacts using non destructive (micro-FTIR, reflectance mode) and micro-destructive (based on sampling and analysis of a stratigraphical section by OM and SEM-EDX) methods. Burial soils were geologically classified and analyzed by chemical methods (pH, conductivity, anions content). Most of objects analyzed showed a coarse and inhomogeneous corroded structure, often made up of several corrosion layers. This has been explained by the silt nature of soils, which contain low amount of clay and are, therefore, quite accessible to water and air. The main cause of a high dissolution rate of bronze alloys is the alternate water saturation and instauration of the soil, for example on a seasonal scale. Moreover, due to the vicinity of the Black Sea, the detrimental effect of chlorine has been evidenced for few objects, which were affected by the bronze disease. A general classification of corrosion layers was achieved by comparing values of the ratio Cu/Sn in the alloy and in the patina. Decuprification is a general trend, and enrichment of copper within the corrosion layers, due to the formation of thick layers of cuprite (Cu2O), is pointed out as well. Uncommon corrosion products and degradation patterns were presented as well, and they are probably due to peculiar local conditions taking place during the burial time, such as anaerobic conditions or fluctuating environmental conditions. In order to acquire a better insight into the corrosion mechanisms, the second part of the thesis has regarded simulation experiments, which were conducted on commercial Cu-Sn alloys, whose composition resembles those of ancient artefacts one. Electrochemical measurements were conducted in natural electrolytes, such as solutions extracted from natural soil (sampled at the archaeological sites) and seawater. Cyclic potentiodynamic experiments allowed appreciating the mechanism of corrosion in both cases. Soil extract’s electrolyte has been evaluated being a non aggressive medium, while artificial solution prepared by increasing the concentration of anions caused the pitting corrosion of the alloy, which is demonstrated by optical observations. In particular, electrochemical impedance spectroscopy allows assessing qualitatively the nature of corroded structures formed in soil and seawater. A double-structured layer is proposed, which differ, in the two cases, for the nature of the internal passive layer, which result defectiveness and porous in case of seawater.