7 resultados para D EXCHANGE INTERACTION

em AMS Tesi di Dottorato - Alm@DL - Università di Bologna


Relevância:

80.00% 80.00%

Publicador:

Resumo:

Molecular recognition and self-assembly represent fundamental issues for the construction of supramolecular systems, structures in which the components are held together through non-covalent interactions. The study of host-guest complexes and mechanical interlocked molecules, important examples in this field, is necessary in order to characterize self-assembly processes, achieve more control over the molecular organization and develop sophisticated structures by using properly designed building blocks. The introduction of paramagnetic species, or spin labelling, represents an attractive opportunity that allows their detection and characterization by the Electron Spin Resonance spectroscopy, a valuable technique that provides additional information to those obtained by traditional methods. In this Thesis, recent progresses in the design and the synthesis of new paramagnetic host-guest complexes and rotaxanes characterized by the presence of nitroxide radicals and their investigation by ESR spectroscopy are reported. In Chapter 1 a brief overview of the principal concepts of supramolecular chemistry, the spin labelling approach and the development of ESR methods applied to paramagnetic systems are described. Chapter 2 and 3 are focused on the introduction of radicals in macrocycles as Cucurbiturils and Pillar[n]arenes, due to the interesting binding properties and the potential employment in rotaxanes, in order to investigate their structures and recognition properties. Chapter 4 deals with one of the most studied mechanical interlocked molecules, the bistable [2]rotaxane reported by Stoddart and Heath based on the ciclobis (paraquat-p-phenylene) CBPQT4+, that represents a well known example of molecular switch driven by external stimuli. The spin labelling of analogous architectures allows the monitoring by ESR spectroscopy of the switch mechanism involving the ring compound by tuning the spin exchange interaction. Finally, Chapter 5 contains the experimental procedures used for the synthesis of some of the compounds described in Chapter 2-4.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Interaction protocols establish how different computational entities can interact with each other. The interaction can be finalized to the exchange of data, as in 'communication protocols', or can be oriented to achieve some result, as in 'application protocols'. Moreover, with the increasing complexity of modern distributed systems, protocols are used also to control such a complexity, and to ensure that the system as a whole evolves with certain features. However, the extensive use of protocols has raised some issues, from the language for specifying them to the several verification aspects. Computational Logic provides models, languages and tools that can be effectively adopted to address such issues: its declarative nature can be exploited for a protocol specification language, while its operational counterpart can be used to reason upon such specifications. In this thesis we propose a proof-theoretic framework, called SCIFF, together with its extensions. SCIFF is based on Abductive Logic Programming, and provides a formal specification language with a clear declarative semantics (based on abduction). The operational counterpart is given by a proof procedure, that allows to reason upon the specifications and to test the conformance of given interactions w.r.t. a defined protocol. Moreover, by suitably adapting the SCIFF Framework, we propose solutions for addressing (1) the protocol properties verification (g-SCIFF Framework), and (2) the a-priori conformance verification of peers w.r.t. the given protocol (AlLoWS Framework). We introduce also an agent based architecture, the SCIFF Agent Platform, where the same protocol specification can be used to program and to ease the implementation task of the interacting peers.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Four glycoproteins (gD, gB, gH, and gL) are required for herpes simplex virus (HSV) entry into the cell and for cell-cell fusion in transfected cells. gD serves as the receptor-binding glycoprotein and as the trigger of fusion; the other three glycoproteins execute fusion between the viral envelope and the plasma or endocytic membranes. Little is known on the interaction of gD with gB, gH, and gL. Here, the interactions between herpes simplex virus gD and its nectin1 receptor or between gD, gB, and gH were analyzed by complementation of the N and C portions of split enhanced green fluorescent protein (EGFP) fused to the glycoproteins. Split EGFP complementation was detected between proteins designated gDN + gHC, gDN + gBC, and gHN + gBC + wtgD, both in cells transfected with two or tree glycoproteins and in cells transfected with the four glycoproteins, commited to form syncytia. The in situ assay provides evidence that gD interacts with gH and gB independently one of the other. We further document the interaction between gH and gB. To elucidate which portions of the glycoproteins interact with each other we generated mutants of gD and gB. gD triggers fusion through a specialised domain, named pro-fusion domain (PFD), located C-terminally in the ectodomain. Here, we show that PFD is made of subdomains 1 and 2 (amino acids 260–285 and 285–310) and that each one partially contributed to herpes simplex virus infectivity. Chimeric gB molecules composed of HSV and human herpesvirus 8 (HHV8) sequences failed to reach the cell surface and to complement a gB defective virus. By means of pull down experiments we analyzed the interactions of HSV-HHV8 gB chimeras with gH or gD fused to the strep-tag. The gB sequence between aa residues 219-360 was identified as putative region of interaction with gH or critical to the interaction.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Reaching and grasping an object is an action that can be performed in light, under visual guidance, as well as in darkness, under proprioceptive control only. Area V6A is a visuomotor area involved in the control of reaching movements. V6A, besides neurons activated by the execution of reaching movements, shows passive somatosensory and visual responses. This suggests fro V6A a multimodal capability of integrating sensory and motor-related information, We wanted to know whether this integration occurrs in reaching movements and in the present study we tested whether the visual feedback influenced the reaching activity of V6A neurons. In order to better address this question, we wanted to interpret the neural data in the light of the kinematic of reaching performance. We used an experimental paradigm that could examine V6A responses in two different visual backgrounds, light and dark. In these conditions, the monkey performed an istructed-delay reaching task moving the hand towards different target positions located in the peripersonal space. During the execution of reaching task, the visual feedback is processed in a variety of patterns of modulation, sometimes not expected. In fact, having already demonstrated in V6A reach-related discharges in absence of visual feedback, we expected two types of neural modulation: 1) the addition of light in the environment enhanced reach-related discharges recorded in the dark; 2) the light left the neural response unmodified. Unexpectedly, the results show a complex pattern of modulation that argues against a simple additive interaction between visual and motor-related signals.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

This thesis presents the outcomes of my Ph.D. course in telecommunications engineering. The focus of my research has been on Global Navigation Satellite Systems (GNSS) and in particular on the design of aiding schemes operating both at position and physical level and the evaluation of their feasibility and advantages. Assistance techniques at the position level are considered to enhance receiver availability in challenging scenarios where satellite visibility is limited. Novel positioning techniques relying on peer-to-peer interaction and exchange of information are thus introduced. More specifically two different techniques are proposed: the Pseudorange Sharing Algorithm (PSA), based on the exchange of GNSS data, that allows to obtain coarse positioning where the user has scarce satellite visibility, and the Hybrid approach, which also permits to improve the accuracy of the positioning solution. At the physical level, aiding schemes are investigated to improve the receiver’s ability to synchronize with satellite signals. An innovative code acquisition strategy for dual-band receivers, the Cross-Band Aiding (CBA) technique, is introduced to speed-up initial synchronization by exploiting the exchange of time references between the two bands. In addition vector configurations for code tracking are analyzed and their feedback generation process thoroughly investigated.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

In this thesis, a strategy to model the behavior of fluids and their interaction with deformable bodies is proposed. The fluid domain is modeled by using the lattice Boltzmann method, thus analyzing the fluid dynamics by a mesoscopic point of view. It has been proved that the solution provided by this method is equivalent to solve the Navier-Stokes equations for an incompressible flow with a second-order accuracy. Slender elastic structures idealized through beam finite elements are used. Large displacements are accounted for by using the corotational formulation. Structural dynamics is computed by using the Time Discontinuous Galerkin method. Therefore, two different solution procedures are used, one for the fluid domain and the other for the structural part, respectively. These two solvers need to communicate and to transfer each other several information, i.e. stresses, velocities, displacements. In order to guarantee a continuous, effective, and mutual exchange of information, a coupling strategy, consisting of three different algorithms, has been developed and numerically tested. In particular, the effectiveness of the three algorithms is shown in terms of interface energy artificially produced by the approximate fulfilling of compatibility and equilibrium conditions at the fluid-structure interface. The proposed coupled approach is used in order to solve different fluid-structure interaction problems, i.e. cantilever beams immersed in a viscous fluid, the impact of the hull of the ship on the marine free-surface, blood flow in a deformable vessels, and even flapping wings simulating the take-off of a butterfly. The good results achieved in each application highlight the effectiveness of the proposed methodology and of the C++ developed software to successfully approach several two-dimensional fluid-structure interaction problems.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

The pulsed jet Fourier transform microwave spectroscopy have been applied to several molecular complexes involving H2O, freons, methane, carboxylic acids, and rare gas. The obtained results showcase the suitability of this technique for studying the intermolecular interactions. The rotational spectra of three water adducts of halogenated organic molecules, i.e. chlorotrifluoroethylene, isoflurane and alfa,alfa,alfa,-trifluoroanisole, have been investigated. It has been found that, the halogenation of the partner molecules definitely changes the way in which water will link to the partner molecule. Quadrupole hyperfine structures and/or the tunneling splittings have been observed in the rotational spectra of difluoromethane-dichloromethane, chlorotrifluorometane-fluoromethane, difluoromethane-formaldehyde and trifluoromethane-benzene. These features have been useful to describe their intermolecular interactions (weak hydrogen bonds or halogen bonds), and to size the potential energy surfaces of their internal motions. The rotational spectrum of pyridine-methane pointed out that methane prefers to locate above the ring and link to pyridine through a C-H•••π weak hydrogen bond, rather than the C-H•••n interaction. This behavior, typical of complexes of pyridine with rare gases, suggests classifying CH4, in relation to its ability to form molecular complexes with aromatic molecules, as a pseudo rare gas. The conformational equilibria of three bi-molecules of carboxylic acids, acrylic acid-trifluoroacetic acid, difluoroacetic acid-formic acid and acrylic acid-fluoroacetic acid have been studied. The increase of the hydrogen bond length upon H→D isotopic substitution (Ubbelohde effect) has been deduced from the elongation of the carboxylic carbons C•••C distance. The van der Waals complex tetrahydrofuran-krypton shows that the systematic doubling of the rotational lines has been attributed to the residual pseudo-rotation of tetrahydrofuran in the complex, based on the values of the Coriolis coupling constants, and on the type (mu_b) of the interstate transitions.