8 resultados para Cumulative effects assessment (Environmental assessment)

em AMS Tesi di Dottorato - Alm@DL - Università di Bologna


Relevância:

100.00% 100.00%

Publicador:

Resumo:

Introduction. Postnatal neurogenesis in the hippocampal dentate gyrus, can be modulated by numerous determinants, such as hormones, transmitters and stress. Among the factors positively interfering with neurogenesis, the complexity of the environment appears to play a particularly striking role. Adult mice reared in an enriched environment produce more neurons and exhibit better performance in hippocampus-specific learning tasks. While the effects of complex environments on hippocampal neurogenesis are well documented, there is a lack of information on the effects of living under socio-sensory deprivation conditions. Due to the immaturity of rats and mice at birth, studies dealing with the effects of environmental enrichment on hippocampal neurogenesis were carried out in adult animals, i.e. during a period of relatively low rate of neurogenesis. The impact of environment is likely to be more dramatic during the first postnatal weeks, because at this time granule cell production is remarkably higher than at later phases of development. The aim of the present research was to clarify whether and to what extent isolated or enriched rearing conditions affect hippocampal neurogenesis during the early postnatal period, a time window characterized by a high rate of precursor proliferation and to elucidate the mechanisms underlying these effects. The experimental model chosen for this research was the guinea pig, a precocious rodent, which, at 4-5 days of age can be independent from maternal care. Experimental design. Animals were assigned to a standard (control), an isolated, or an enriched environment a few days after birth (P5-P6). On P14-P17 animals received one daily bromodeoxyuridine (BrdU) injection, to label dividing cells, and were sacrificed either on P18, to evaluate cell proliferation or on P45, to evaluate cell survival and differentiation. Methods. Brain sections were processed for BrdU immunhistochemistry, to quantify the new born and surviving cells. The phenotype of the surviving cells was examined by means of confocal microscopy and immunofluorescent double-labeling for BrdU and either a marker of neurons (NeuN) or a marker of astrocytes (GFAP). Apoptotic cell death was examined with the TUNEL method. Serial sections were processed for immunohistochemistry for i) vimentin, a marker of radial glial cells, ii) BDNF (brain-derived neurotrofic factor), a neurotrophin involved in neuron proliferation/survival, iii) PSA-NCAM (the polysialylated form of the neural cell adhesion molecule), a molecule associated with neuronal migration. Total granule cell number in the dentate gyrus was evaluated by stereological methods, in Nissl-stained sections. Results. Effects of isolation. In P18 isolated animals we found a reduced cell proliferation (-35%) compared to controls and a lower expression of BDNF. Though in absolute terms P45 isolated animals had less surviving cells than controls, they showed no differences in survival rate and phenotype percent distribution compared to controls. Evaluation of the absolute number of surviving cells of each phenotype showed that isolated animals had a reduced number of cells with neuronal phenotype than controls. Looking at the location of the new neurons, we found that while in control animals 76% of them had migrated to the granule cell layer, in isolated animals only 55% of the new neurons had reached this layer. Examination of radial glia cells of P18 and P45 animals by vimentin immunohistochemistry showed that in isolated animals radial glia cells were reduced in density and had less and shorter processes. Granule cell count revealed that isolated animals had less granule cells than controls (-32% at P18 and -42% at P45). Effects of enrichment. In P18 enriched animals there was an increase in cell proliferation (+26%) compared to controls and a higher expression of BDNF. Though in both groups there was a decline in the number of BrdU-positive cells by P45, enriched animals had more surviving cells (+63) and a higher survival rate than controls. No differences were found between control and enriched animals in phenotype percent distribution. Evaluation of the absolute number of cells of each phenotype showed that enriched animals had a larger number of cells of each phenotype than controls. Looking at the location of cells of each phenotype we found that enriched animals had more new neurons in the granule cell layer and more astrocytes and cells with undetermined phenotype in the hilus. Enriched animals had a higher expression of PSA-NCAM in the granule cell layer and hilus Vimentin immunohistochemistry showed that in enriched animals radial glia cells were more numerous and had more processes.. Granule cell count revealed that enriched animals had more granule cells than controls (+37% at P18 and +31% at P45). Discussion. Results show that isolation rearing reduces hippocampal cell proliferation but does not affect cell survival, while enriched rearing increases both cell proliferation and cell survival. Changes in the expression of BDNF are likely to contribute to he effects of environment on precursor cell proliferation. The reduction and increase in final number of granule neurons in isolated and enriched animals, respectively, are attributable to the effects of environment on cell proliferation and survival and not to changes in the differentiation program. As radial glia cells play a pivotal role in neuron guidance to the granule cell layer, the reduced number of radial glia cells in isolated animals and the increased number in enriched animals suggests that the size of radial glia population may change dynamically, in order to match changes in neuron production. The high PSA-NCAM expression in enriched animals may concur to favor the survival of the new neurons by facilitating their migration to the granule cell layer. Conclusions. By using a precocious rodent we could demonstrate that isolated/enriched rearing conditions, at a time window during which intense granule cell proliferation takes place, lead to a notable decrease/increase of total granule cell number. The time-course and magnitude of postnatal granule cell production in guinea pigs are more similar to the human and non-human primate condition than in rats and mice. Translation of current data to humans would imply that exposure of children to environments poor/rich of stimuli may have a notably large impact on dentate neurogenesis and, very likely, on hippocampus dependent memory functions.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Natural systems face pressures exerted by natural physical-chemical forcings and a myriad of co-occurring human stressors that may interact to cause larger than expected effects, thereby presenting a challenge to ecosystem management. This thesis aimed to develop new information that can contribute to reduce the existing knowledge gaps hampering the holistic management of multiple stressors. I undertook a review of the state-of-the-art methods to detect, quantify and predict stressor interactions, identifying techniques that could be applied in this thesis research. Then, I conducted a systematic review of saltmarsh multiple stressor studies in conjunction with a multiple stressor mapping exercise for the study system in order to infer potential important synergistic stressor interactions. This analysis identified key stressors that are affecting the study system, but also pointed to data gaps in terms of driver and pressure data and raised issues for potentially overlooked stressors. Using field mesocosms, I explored how a local stressor (nutrient availability) affects the responses of saltmarsh vegetation to a global stressor (increased inundation) in different soil types. Results indicate that saltmarsh vegetation would be more drastically affected by increased inundation in low than in medium organic matter soils, and especially in estuaries already under high nutrient availability. In another field experiment, I examined the challenges of managing co-occurring and potentially interacting local stressors on saltmarsh vegetation: recreational trampling and smothering by deposition of excess macroalgal wrack due to high nutrient loads. Trampling and wrack prevention had interacting effects, causing non-linear responses of the vegetation to simulated management of these stressors, such that vegetation recovered only in those treatments simulating the combined prevention of both stressors. During this research I detected, using molecular genetic methods, a widespread presence of S. anglica (and to a lesser extent S. townsendii), two previously unrecorded non-native Spartinas in the study areas.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Atmospheric CO2 concentration ([CO2]) has increased over the last 250 years, mainly due to human activities. Of total anthropogenic emissions, almost 31% has been sequestered by the terrestrial biosphere. A considerable contribution to this sink comes from temperate and boreal forest ecosystems of the northern hemisphere, which contain a large amount of carbon (C) stored as biomass and soil organic matter. Several potential drivers for this forest C sequestration have been proposed, including increasing atmospheric [CO2], temperature, nitrogen (N) deposition and changes in management practices. However, it is not known which of these drivers are most important. The overall aim of this thesis project was to develop a simple ecosystem model which explicitly incorporates our best understanding of the mechanisms by which these drivers affect forest C storage, and to use this model to investigate the sensitivity of the forest ecosystem to these drivers. I firstly developed a version of the Generic Decomposition and Yield (G’DAY) model to explicitly investigate the mechanisms leading to forest C sequestration following N deposition. Specifically, I modified the G’DAY model to include advances in understanding of C allocation, canopy N uptake, and leaf trait relationships. I also incorporated a simple forest management practice subroutine. Secondly, I investigated the effect of CO2 fertilization on forest productivity with relation to the soil N availability feedback. I modified the model to allow it to simulate short-term responses of deciduous forests to environmental drivers, and applied it to data from a large-scale forest Free-Air CO2 Enrichment (FACE) experiment. Finally, I used the model to investigate the combined effects of recent observed changes in atmospheric [CO2], N deposition, and climate on a European forest stand. The model developed in my thesis project was an effective tool for analysis of effects of environmental drivers on forest ecosystem C storage. Key results from model simulations include: (i) N availability has a major role in forest ecosystem C sequestration; (ii) atmospheric N deposition is an important driver of N availability on short and long time-scales; (iii) rising temperature increases C storage by enhancing soil N availability and (iv) increasing [CO2] significantly affects forest growth and C storage only when N availability is not limiting.

Relevância:

80.00% 80.00%

Publicador:

Resumo:

Environmental decay in porous masonry materials, such as brick and mortar, is a widespread problem concerning both new and historic masonry structures. The decay mechanisms are quite complex dependng upon several interconnected parameters and from the interaction with the specific micro-climate. Materials undergo aesthetical and substantial changes in character but while many studies have been carried out, the mechanical aspect has been largely understudied while it bears true importance from the structural viewpoint. A quantitative assessment of the masonry material degradation and how it affects the load-bearing capacity of masonry structures appears missing. The research work carried out, limiting the attention to brick masonry addresses this issue through an experimental laboratory approach via different integrated testing procedures, both non-destructive and mechanical, together with monitoring methods. Attention was focused on transport of moisture and salts and on the damaging effects caused by the crystallization of two different salts, sodium chloride and sodium sulphate. Many series of masonry specimens, very different in size and purposes were used to track the damage process since its beginning and to monitor its evolution over a number of years Athe same time suitable testing techniques, non-destructive, mini-invasive, analytical, of monitoring, were validated for these purposes. The specimens were exposed to different aggressive agents (in terms of type of salt, of brine concentration, of artificial vs. open-air natural ageing, …), tested by different means (qualitative vs. quantitative, non destructive vs. mechanical testing, punctual vs. wide areas, …), and had different size (1-, 2-, 3-header thick walls, full-scale walls vs. small size specimens, brick columns and triplets vs. small walls, masonry specimens vs. single units of brick and mortar prisms, …). Different advanced testing methods and novel monitoring techniques were applied in an integrated holistic approach, for quantitative assessment of masonry health state.

Relevância:

70.00% 70.00%

Publicador:

Resumo:

In this study, some important aspects of the relationship between honey bees (Apis mellifera L.) and pesticides have been investigated. In the first part of the research, the effects of the exposure of honey bees to neonicotinoids and fipronil contaminated dusts were analyzed. In fact, considerable amounts of these pesticides, employed for maize seed dressing treatments, may be dispersed during the sowing operations, thus representing a way of intoxication for honey bees. In particular, a specific way of exposure to this pesticides formulation, the indirect contact, was taken into account. To this aim, we conducted different experimentations, in laboratory, in semi-field and in open field conditions in order to assess the effects on mortality, foraging behaviour, colony development and capacity of orientation. The real dispersal of contaminated dusts was previously assessed in specific filed trials. In the second part, the impact of various pesticides (chemical and biological) on honey bee biochemical-physiological changes, was evaluated. Different ways and durations of exposure to the tested products were also employed. Three experimentations were performed, combining Bt spores and deltamethrin, Bt spores and fipronil, difenoconazole and deltamethrin. Several important enzymes (GST, ALP, SOD, CAT, G6PDH, GAPDH) were selected in order to test the pesticides induced variations in their activity. In particular, these enzymes are involved in different pathways of detoxification, oxidative stress defence and energetic metabolism. The results showed a significant effect on mortality of neonicotinoids and fipronil contaminated dusts, both in laboratory and in semi-field trials. However, no effects were evidenced in honey bees orientation capacity. The analysis of different biochemical indicators highlighted some interesting physiological variations that can be linked to the pesticide exposure. We therefore stress the attention on the possibility of using such a methodology as a novel toxicity endpoint in environmental risk assessment.

Relevância:

60.00% 60.00%

Publicador:

Resumo:

A new Coastal Rapid Environmental Assessment (CREA) strategy has been developed and successfully applied to the Northern Adriatic Sea. CREA strategy exploits the recent advent of operational oceanography to establish a CREA system based on an operational regional forecasting system and coastal monitoring networks of opportunity. The methodology wishes to initialize a coastal high resolution model, nested within the regional forecasting system, blending the large scale parent model fields with the available coastal observations to generate the requisite field estimates. CREA modeling system consists of a high resolution, O(800m), Adriatic SHELF model (ASHELF) implemented into the Northern Adriatic basin and nested within the Adriatic Forecasting System (AFS) (Oddo et al. 2006). The observational system is composed by the coastal networks established in the framework of ADRICOSM (ADRiatic sea integrated COastal areaS and river basin Managment system) Pilot Project. An assimilation technique exerts a correction of the initial field provided by AFS on the basis of the available observations. The blending of the two data sets has been carried out through a multi-scale optimal interpolation technique developed by Mariano and Brown (1992). Two CREA weekly exercises have been conducted: the first, at the beginning of May (spring experiment); the second in middle August (summer experiment). The weeks have been chosen looking at the availability of all coastal observations in the initialization day and one week later to validate model results, verifying our predictive skills. ASHELF spin up time has been investigated too, through a dedicated experiment, in order to obtain the maximum forecast accuracy within a minimum time. Energetic evaluations show that for the Northern Adriatic Sea and for the forcing applied, a spin-up period of one week allows ASHELF to generate new circulation features enabled by the increased resolution and its total kinetic energy to establish a new dynamical balance. CREA results, evaluated by mean of standard statistics between ASHELF and coastal CTDs, show improvement deriving from the initialization technique and a good model performance in the coastal areas of the Northern Adriatic basin, characterized by a shallow and wide continental shelf subject to substantial freshwater influence from rivers. Results demonstrate the feasibility of our CREA strategy to support coastal zone management and wish an additional establishment of operational coastal monitoring activities to advance it.

Relevância:

60.00% 60.00%

Publicador:

Resumo:

Life Cycle Assessment (LCA) is a chain-oriented tool to evaluate the environment performance of products focussing on the entire life cycle of these products: from the extraction of resources, via manufacturing and use, to the final processing of the disposed products. Through all these stages consumption of resources and pollutant releases to air, water, soil are identified and quantified in Life Cycle Inventory (LCI) analysis. Subsequently to the LCI phase follows the Life Cycle Impact Assessment (LCIA) phase; that has the purpose to convert resource consumptions and pollutant releases in environmental impacts. The LCIA aims to model and to evaluate environmental issues, called impact categories. Several reports emphasises the importance of LCA in the field of ENMs. The ENMs offer enormous potential for the development of new products and application. There are however unanswered questions about the impacts of ENMs on human health and the environment. In the last decade the increasing production, use and consumption of nanoproducts, with a consequent release into the environment, has accentuated the obligation to ensure that potential risks are adequately understood to protect both human health and environment. Due to its holistic and comprehensive assessment, LCA is an essential tool evaluate, understand and manage the environmental and health effects of nanotechnology. The evaluation of health and environmental impacts of nanotechnologies, throughout the whole of their life-cycle by using LCA methodology. This is due to the lack of knowledge in relation to risk assessment. In fact, to date, the knowledge on human and environmental exposure to nanomaterials, such ENPs is limited. This bottleneck is reflected into LCA where characterisation models and consequently characterisation factors for ENPs are missed. The PhD project aims to assess limitations and challenges of the freshwater aquatic ecotoxicity potential evaluation in LCIA phase for ENPs and in particular nanoparticles as n-TiO2.

Relevância:

60.00% 60.00%

Publicador:

Resumo:

One of the main problems recognized in sustainable development goals and sustainable agricultural objectives is Climate change. Farming contributes significantly to the overall Greenhouse gases (GHG) in the atmosphere, which is approximately 10-12 percent of total GHG emissions, but when taking in consideration also land-use change, including deforestation driven by agricultural expansion for food, fiber and fuel the number rises to approximately 30 percent (Smith et. al., 2007). There are two distinct methodological approaches for environmental impact assessment; Life Cycle Assessment (a bottom up approach) and Input-Output Analysis (a top down approach). The two methodologies differ significantly but there is not an immediate choice between them if the scope of the study is on a sectorial level. Instead, as an alternative, hybrid approaches which combine these two approaches have emerged. The aim of this study is to analyze in a greater detail the agricultural sectors contribution to Climate change caused by the consumption of food products. Hence, to identify the food products that have the greatest impact through their life cycle, identifying their hotspots and evaluating the mitigation possibilities for the same. At the same time evaluating methodological possibilities and models to be applied for this purpose both on a EU level and on a country level (Italy).