2 resultados para Cross Document Structure Theory

em AMS Tesi di Dottorato - Alm@DL - Università di Bologna


Relevância:

50.00% 50.00%

Publicador:

Resumo:

This thesis aims at investigating a new approach to document analysis based on the idea of structural patterns in XML vocabularies. My work is founded on the belief that authors do naturally converge to a reasonable use of markup languages and that extreme, yet valid instances are rare and limited. Actual documents, therefore, may be used to derive classes of elements (patterns) persisting across documents and distilling the conceptualization of the documents and their components, and may give ground for automatic tools and services that rely on no background information (such as schemas) at all. The central part of my work consists in introducing from the ground up a formal theory of eight structural patterns (with three sub-patterns) that are able to express the logical organization of any XML document, and verifying their identifiability in a number of different vocabularies. This model is characterized by and validated against three main dimensions: terseness (i.e. the ability to represent the structure of a document with a small number of objects and composition rules), coverage (i.e. the ability to capture any possible situation in any document) and expressiveness (i.e. the ability to make explicit the semantics of structures, relations and dependencies). An algorithm for the automatic recognition of structural patterns is then presented, together with an evaluation of the results of a test performed on a set of more than 1100 documents from eight very different vocabularies. This language-independent analysis confirms the ability of patterns to capture and summarize the guidelines used by the authors in their everyday practice. Finally, I present some systems that work directly on the pattern-based representation of documents. The ability of these tools to cover very different situations and contexts confirms the effectiveness of the model.

Relevância:

40.00% 40.00%

Publicador:

Resumo:

The main topic of this thesis is confounding in linear regression models. It arises when a relationship between an observed process, the covariate, and an outcome process, the response, is influenced by an unmeasured process, the confounder, associated with both. Consequently, the estimators for the regression coefficients of the measured covariates might be severely biased, less efficient and characterized by misleading interpretations. Confounding is an issue when the primary target of the work is the estimation of the regression parameters. The central point of the dissertation is the evaluation of the sampling properties of parameter estimators. This work aims to extend the spatial confounding framework to general structured settings and to understand the behaviour of confounding as a function of the data generating process structure parameters in several scenarios focusing on the joint covariate-confounder structure. In line with the spatial statistics literature, our purpose is to quantify the sampling properties of the regression coefficient estimators and, in turn, to identify the most prominent quantities depending on the generative mechanism impacting confounding. Once the sampling properties of the estimator conditionally on the covariate process are derived as ratios of dependent quadratic forms in Gaussian random variables, we provide an analytic expression of the marginal sampling properties of the estimator using Carlson’s R function. Additionally, we propose a representative quantity for the magnitude of confounding as a proxy of the bias, its first-order Laplace approximation. To conclude, we work under several frameworks considering spatial and temporal data with specific assumptions regarding the covariance and cross-covariance functions used to generate the processes involved. This study allows us to claim that the variability of the confounder-covariate interaction and of the covariate plays the most relevant role in determining the principal marker of the magnitude of confounding.