4 resultados para Courbe dose-réponse non linéaire
em AMS Tesi di Dottorato - Alm@DL - Università di Bologna
Resumo:
In the past two decades the work of a growing portion of researchers in robotics focused on a particular group of machines, belonging to the family of parallel manipulators: the cable robots. Although these robots share several theoretical elements with the better known parallel robots, they still present completely (or partly) unsolved issues. In particular, the study of their kinematic, already a difficult subject for conventional parallel manipulators, is further complicated by the non-linear nature of cables, which can exert only efforts of pure traction. The work presented in this thesis therefore focuses on the study of the kinematics of these robots and on the development of numerical techniques able to address some of the problems related to it. Most of the work is focused on the development of an interval-analysis based procedure for the solution of the direct geometric problem of a generic cable manipulator. This technique, as well as allowing for a rapid solution of the problem, also guarantees the results obtained against rounding and elimination errors and can take into account any uncertainties in the model of the problem. The developed code has been tested with the help of a small manipulator whose realization is described in this dissertation together with the auxiliary work done during its design and simulation phases.
Resumo:
In the era of monoclonal antibodies the role of autologous stem cell transplantation (ASCT) in the management of follicular lymphoma (FL) is still debated. To evaluate the safety and efficacy of myeloablative therapy with rescue of purged or unpurged harvests in FL pts. At our institution form 1997 to 2007 28 pts with refractory/resistant FL were eligible for ASCT. Before high dose therapy they received 2-3 cycles of CHOP-like regimen (ACOD), followed by Cyclophosphamide 4g/mq to mobilize the stem cells (SC). After SC collection the pts underwent 3 cycles of subcutaneous Cladribine at a daily dose of 0,14-0,10 mg/Kg for Day 1-5 every 3-4 weeks. The conditioning regimen was based on Mitoxantrone 60mg/mq + Melphalan 180 mg/mq, followed by SC re-infusion 24-hours later and G-CSF starting 24 hours after re-infusion. In 19 pts the SC underwent purging: in 10 harvests the CD34+ were selected by immunomagnetic beads, while in the other 9 pts, only Rituximab was used as “purging in vivo” agent. The remaining 9 pts received unpurged SC. Before ASCT 11 pts were in complete response (CR), 9 in partial response (PR) and 2 in stable disease. Two pts were not eligible for ASCT because of progressive disease (PD). The remaining 25 pts were eligible for ASCT. The engraftment was at a median of 11 days for leucocytes and 14 days for platelets (>20.000/mmc), with a delay of one day in the pts, who received purged SC. Grade 3-4 mucositis was described in 8 pts. During aplasia a 48% infection rate was reported, without differences between pts with purged or unpurged SC. One patient in CR presented myelodysplastic syndrome at 18 months from ASCT. After ASCT 22 pts were in CR, 2 in PR and one patient were not valuable, because died before response assessment. Nine pts in CR showed PD at a median time of 14 months from ASCT. With a median follow up of 5 years (range 2 months -10 years), 22 pts are alive and 11 (44%) in CR. Ten pts died, 5 for progressive disease and 5 for treatment-related causes; in particular 7 of them received in-vitro purged SC. Conclusions: Our chemotherapy regimen, which included the purine analogue Cladribine in the induction phase, seems safe and feasible. The high rate of CR reported and the sustained freedom from progression up to now, makes such modality of treatment a valid option principally in relapsing FL patients. In our experience, the addition of a monoclonal antibody as part of treatment confirms its role “in vivo purging” without observing an increased incidence of infection.
Resumo:
Nella sindrome metabolica l’insulino-resistenza e l’obesità rappresentano i fattori chiave nello sviluppo di tale patologia, ma il principale player risulta un’infiammazione cronica di basso grado (Chronic Low Grade Inflammation) a carico del tessuto adiposo. Lo scopo di questo progetto di ricerca è quindi stato quello di testare citochine a basso dosaggio come possibile trattamento dell’infiammazione cronica. Le citochine utilizzate (GUNA®-Interleukin 4 (IL-4), GUNA®-Interleukin 10 (IL-10), GUNA®-Melatonin, GUNA®-Melatonin+GUNA®-IL-4.) sono state fornite dall’azienda GUNA S.p.a. Poiché l’infiammazione cronica a basso grado inizia in seguito ad un aumento eccessivo del tessuto adiposo, inizialmente si è valutato l’effetto su una linea di preadipociti murini (3T3-L1). Questa prima parte dello studio ha messo in evidenza come le citochine a basso dosaggio non modificano la vitalità cellulare, anche se agiscono sull’espressione e la localizzazione di vimentina e E-caderina. Inoltre IL-4 e IL-10 sembrano avere una parziale attività inibitoria, non significativa, sull’adipogenesi ad eccezione dell’espressione dell’adiponectina che appare significativamente aumentata. In ultimo i trattamenti con IL-4 e IL-10 hanno mostrato una diminuzione del contenuto di ROS e una ridotta attività antiinfiammatoria dovuta alla diminuzione di IL-6 secreto. Un’altra popolazione cellulare principale nel tessuto adiposo è rappresentata dalle ASC (Adipose Stem Cell). Per tale motivo si è proseguito valutando l’effetto che le citochine low-dose su questo citotipo, evidenziando che il trattamento con le citochine non risulta essere tossico, anche se sembrerebbe rallentare la crescita cellulare, e determina un’inibizione del processo adipogenico. Inoltre il trattamento con IL-10 sembra stimolare le ASC a produrre fattori che inducono una maggiore vasculogenesi e le induce a produrre fattori chemiotattici che determinano una maggiore capacità di rigenerazione tissutale da parte di MSC da derma. Infine, il trattamento con IL-4 e IL-10 stimola probabilmente una minore produzione di citochine pro-infiammatorie che inducono in maniera significativa una minore mobilità di cellule MSC.
Resumo:
Plasma medicine is a branch of plasma-promising biomedical applications that uses cold atmospheric plasma (CAP) as a therapeutic agent in treating a wide range of medical conditions including cancer. Epithelial ovarian cancer (EOC) is a highly malignant and aggressive form of ovarian cancer, and most patients are diagnosed at advanced stages which significantly reduces the chances of successful treatment. Treatment resistance is also common, highlighting the need for novel therapies to be developed to treat EOC. Research in Plasma Medicine has revealed that plasma has unique properties suitable for biomedical applications and medical therapies, including responses to hormetic stimuli. However, the exact mechanisms by which CAP works at the molecular level are not yet fully understood. In this regard, the main goal of this thesis is to identify a possible adjuvant therapy for cancer, which could exert a cytotoxic effect, without damaging the surrounding healthy cells. An examination of different plasma-activated liquids (PALs) revealed their potential as effective tools for significantly inhibiting the growth of EOC. The dose-response profile between PALs and their targeted cytotoxic effects on EOC cells without affecting healthy cells was established. Additionally, it was validated that PALs exert distinct effects on different subtypes of EOC, possibly linked to the cells' metabolism. This suggests the potential for developing new, personalized anticancer strategies. Furthermore, it was observed that CAP treatment can alter the chemistry of a biomolecule present in PAL, impacting its cytotoxic activity. The effectiveness of the treatment was also preliminarily evaluated in 3D cultures, opening the door for further investigation of a possible correlation between the tumor microenvironment and PALs' resistance. These findings shed light on the intricate interplay between CAP and the liquid substrate and cell behaviour, providing valuable insights for the development of a novel and promising CAP-based cancer treatment for clinical application.