2 resultados para Cotton gins and ginning
em AMS Tesi di Dottorato - Alm@DL - Università di Bologna
Resumo:
The present thesis investigates the issue of work-family conflict and facilitation in a sanitarian contest, using the DISC Model (De Jonge and Dormann, 2003, 2006). The general aim has been declined in two empirical studies reported in this dissertation chapters. Chapter 1 reporting the psychometric properties of the Demand-Induced Strain Compensation Questionnaire. Although the empirical evidence on the DISC Model has received a fair amount of attention in literature both for the theoretical principles and for the instrument developed to display them (DISQ; De Jonge, Dormann, Van Vegchel, Von Nordheim, Dollard, Cotton and Van den Tooren, 2007) there are no studies based solely on psychometric investigation of the instrument. In addition, no previous studies have ever used the DISC as a model or measurement instrument in an Italian context. Thus the first chapter of the present dissertation was based on psychometric investigation of the DISQ. Chapter 2 reporting a longitudinal study contribution. The purpose was to examine, using the DISC model, the relationship between emotional job characteristics, work-family interface and emotional exhaustion among a health care population. We started testing the Triple Match Principle of the DISC Model using solely the emotional dimension of the strain-stress process (i.e. emotional demands, emotional resources and emotional exhaustion). Then we investigated the mediator role played by w-f conflict and w-f facilitation in relation to emotional job characteristics and emotional exhaustion. Finally we compared the mediator model across workers involved in chronic illness home demands and workers who are not involved. Finally, a general conclusion, integrated and discussed the main findings of the studies reported in this dissertation.
Resumo:
The functionalization of substrates through the application of nanostructured coatings allows to create new materials, with enhanced properties. In this work, the development of self-cleaning and antibacterial textiles, through the application of TiO2 and Ag based nanostructured coatings was carried out. The production of TiO2 and Ag functionalized materials was achieved both by the classical dip-padding-curing method and by the innovative electrospinning process to obtain nanofibers doped with nano-TiO2 and nano-Ag. In order to optimize the production of functionalized textiles, the study focused on the comprehension of mechanisms involved in the photocatalytic and antibacterial processes and on the real applicability of the products. In particular, a deep investigation on the relationship between nanosol physicochemical characteristics, nanocoating properties and their performances was accomplished. Self-cleaning textiles with optimized properties were obtained by properly purifying and applying commercial TiO2 nanosol while the studies on the photocatalytic mechanism operating in self-cleaning application demonstrated the strong influence of hydrophilic properties and of interaction surface/radicals on final performance. Moreover, a study about the safety in handling of nano-TiO2 was carried out and risk remediation strategies, based on “safety by design” approach, were developed. In particular, the coating of TiO2 nanoparticles by a SiO2 shell was demonstrated to be the best risk remediation strategy in term of biological response and preserving of photoreactivity. The obtained results were confirmed determining the reactive oxygen species production by a multiple approach. Antibacterial textiles for biotechnological applications were also studied and Ag-coated cotton materials, with significant anti-bacterial properties, were produced. Finally, composite nanofibers were obtained merging biopolymer processing and sol-gel techniques. Indeed, electrospun nanofibers embedded with TiO2 and Ag NPs, starting from aqueous keratin based formulation were produced and the photocatalytic and antibacterial properties were assessed. The results confirmed the capability of electrospun keratin nanofibers matrix to preserve nanoparticle properties.