2 resultados para Correlation functional combinations
em AMS Tesi di Dottorato - Alm@DL - Università di Bologna
Resumo:
Streptococcus pneumoniae is an important life threatening human pathogen causing agent of invasive diseases such as otitis media, pneumonia, sepsis and meningitis, but is also a common inhabitant of the respiratory tract of children and healthy adults. Likewise most streptococci, S. pneumoniae decorates its surface with adhesive pili, composed of covalently linked subunits and involved in the attachment to epithelial cells and virulence. The pneumococcal pili are encoded by two genomic regions, pilus islet 1 (PI-1), and pilus islet-2 (PI-2), which are present in about 30% and 16% of the pneumococcal strains, respectively. PI-1 exists in three clonally related variants, whereas PI-2 is highly conserved. The presence of the islets does not correlate with the serotype of the strains, but with the genotype (as determined by Multi Locus Sequence Typing). The prevalence of PI-1 and PI-2 positive strains is similar in isolates from invasive disease and carriage. To better dissect a possible association between PIs presence and disease we evaluated the distribution of the two PIs in a panel of 113 acute otitis media (AOM) clinical isolates from Israel. PI-1 was present in 30.1% (N=34) of the isolates tested, and PI-2 in 7% (N=8). We found that 50% of the PI-1 positive isolates belonged to the international clones Spain9V-3 (ST156) and Taiwan19F-14 (ST236), and that PI-2 was not present in the absence of Pl-1. In conclusion, there was no correlation between PIs presence and AOM, and, in general, the observed differences in PIs prevalence are strictly dependent upon regional differences in the distribution of the clones. Finally, in the AOM collection the prevalence of PI-1 was higher among antibiotic resistant isolates, confirming previous indications obtained by the in silico analysis of the MLST database collection. Since the pilus-1 subunits were shown to confer protection in mouse models of infection both in active and passive immunization studies, and were regarded as potential candidates for a new generation of protein-based vaccines, the functional characterization was mainly focused on S. pneumoniae pilus -1 components. The pneumococcal pilus-1 is composed of three subunits, RrgA, RrgB and RrgC, each stabilized by intra-molecular isopeptide bonds and covalently polymerized by means of inter-molecular isopeptide bonds to form an extended fibre. The pilus shaft is a multimeric structure mainly composed by the RrgB backbone subunit. The minor ancillary proteins are located at the tip and at the base of the pilus, where they have been proposed to act as the major adhesin (RrgA) and as the pilus anchor (RrgC), respectively. RrgA is protective in in vivo mouse models, and exists in two variants (clades I and II). Mapping of the sequence variability onto the RrgA structure predicted from X-ray data showed that the diversity was restricted to the “head” of the protein, which contains the putative binding domains, whereas the elongated “stalk” was mostly conserved. To investigate whether this variability could influence the adhesive capacity of RrgA and to map the regions important for binding, two full-length protein variants and three recombinant RrgA portions were tested for adhesion to lung epithelial cells and to purified extracellular matrix (ECM) components. The two RrgA variants displayed similar binding abilities, whereas none of the recombinant fragments adhered at levels comparable to those of the full-length protein, suggesting that proper folding and structural arrangement are crucial to retain protein functionality. Furthermore, the two RrgA variants were shown to be cross-reactive in vitro and cross-protective in vivo in a murine model of passive immunization. Taken together, these data indicate that the region implicated in adhesion and the functional epitopes responsible for the protective ability of RrgA may be conserved and that the considerable level of variation found within the “head” domain of RrgA may have been generated by immunologic pressure without impairing the functional integrity of the pilus.
Resumo:
Asthma and chronic obstructive pulmonary disease (COPD) are two distinct lung diseases with distinctive clinical and inflammatory features. A proportion of asthmatic patients experience a fixed airflow obstruction that persists despite optimal pharmacologic treatment for reasons that are still largely unknown. We found that patients with asthma and COPD sharing a similar fixed airflow obstruction have an increased lung function decline and frequency of exacerbations. Nevertheless, the decline in lung function is associated with specific features of the underlying inflammation. Airway inflammation increases during asthma exacerbation and disease severity. Less is known about the correlations between symptoms and airway inflammation in COPD patients. We found that there is no correlation between symptoms and lung function in COPD patients. Nevertheless symptoms changes are associated with specific inflammatory changes: cough is associated with an increase of sputum neutrophils in COPD, dyspnoea is associated with an increase of eosinophils. The mechanisms of this correlation remain unknown. Neutrophils inflammation is associated with bacterial colonization in stable COPD. Is not known whether inhaled corticosteroids might facilitate bacterial colonization in COPD patients. We found that the use of inhaled corticosteroids in COPD patients is associated with an increase of airway bacterial load and with an increase of airway pathogen detection. Bacterial and viral infections are the main causes of COPD and asthma exacerbations. Impaired innate immune responses to rhinovirus infections have been described in adult patients with atopic asthma. Whether this impaired immune condition is present early in life and whether is modulated by a concomitant atopic condition is currently unknown. We found that deficient innate immune responses to rhinovirus infection are already present early in life in atopic patients without asthma and in asthmatic subjects. These findings generalize the scenario of increased susceptibility to viral infections to other Th2 oriented conditions.