2 resultados para Coronary artery occlusion

em AMS Tesi di Dottorato - Alm@DL - Università di Bologna


Relevância:

100.00% 100.00%

Publicador:

Resumo:

It is still unknown whether traditional risk factors may have a sex specific impact on the severity of coronary artery disease (CAD) and subsequent mortality in acute coronary syndromes (ACS). We identified 14 793 patients who underwent coronary angiography for acute coronary syndromes in the ISACS-TC (NCT01218776) registry from 2010 to 2019. The main outcome measure was the association between conventional risk factors and severity of CAD and its relationship with 30-day mortality. Risk ratios (RRs) and 95% CIs were calculated from the ratio of the absolute risks of women versus men using inverse probability of weighting. Severity of disease was categorized as obstructive (≥50% stenosis) versus nonobstructive CAD, specifically Ischemia and No Obstructive Coronary Artery disease (INOCA) and Myocardial Infarction with Non obstructive Coronary Arteries (MINOCA). The RR ratio for obstructive CAD in women versus men among people without diabetes mellitus was 0.49(95%CI,0.41–0.60) and among those with diabetes mellitus was 0.89(95% CI,0.62–1.29), with an interaction by diabetes mellitus status of P =0.002. Exposure to smoking shifted the RR ratios from 0.50 (95% CI, 0.41–0.61) in nonsmokers to 0.75 (95%CI, 0.54–1.03) in current smokers, with an interaction by smoking status of P=0.018. There were no significant sex-related interactions with hypercholesterolemia and hypertension. Women with obstructive CAD had higher 30-day mortality rates than men (RR, 1.75; 95% CI, 1.48–2.07). No sex differences in mortality were observed in patients with INOCA/MINOCA. In conclusion, obstructive CAD in women signifies a higher risk for mortality compared with men. Current smoking and diabetes mellitus disproportionally increase the risk of obstructive CAD in women. Achieving the goal of improving cardiovascular health in women still requires intensive efforts toward further implementation of lifestyle and treatment interventions.

Relevância:

90.00% 90.00%

Publicador:

Resumo:

Advances in stem cell biology have challenged the notion that infarcted myocardium is irreparable. The pluripotent ability of stem cells to differentiate into specialized cell lines began to garner intense interest within cardiology when it was shown in animal models that intramyocardial injection of bone marrow stem cells (MSCs), or the mobilization of bone marrow stem cells with spontaneous homing to myocardium, could improve cardiac function and survival after induced myocardial infarction (MI) [1, 2]. Furthermore, the existence of stem cells in myocardium has been identified in animal heart [3, 4], and intense research is under way in an attempt to clarify their potential clinical application for patients with myocardial infarction. To date, in order to identify the best one, different kinds of stem cells have been studied; these have been derived from embryo or adult tissues (i.e. bone marrow, heart, peripheral blood etc.). Currently, three different biologic therapies for cardiovascular diseases are under investigation: cell therapy, gene therapy and the more recent “tissue-engineering” therapy . During my Ph.D. course, first I focalised my study on the isolation and characterization of Cardiac Stem Cells (CSCs) in wild-type and transgenic mice and for this purpose I attended, for more than one year, the Cardiovascular Research Institute of the New York Medical College, in Valhalla (NY, USA) under the direction of Doctor Piero Anversa. During this period I learnt different Immunohistochemical and Biomolecular techniques, useful for investigating the regenerative potential of stem cells. Then, during the next two years, I studied the new approach of cardiac regenerative medicine based on “tissue-engineering” in order to investigate a new strategy to regenerate the infracted myocardium. Tissue-engineering is a promising approach that makes possible the creation of new functional tissue to replace lost or failing tissue. This new discipline combines isolated functioning cells and biodegradable 3-dimensional (3D) polymeric scaffolds. The scaffold temporarily provides the biomechanical support for the cells until they produce their own extracellular matrix. Because tissue-engineering constructs contain living cells, they may have the potential for growth and cellular self-repair and remodeling. In the present study, I examined whether the tissue-engineering strategy within hyaluron-based scaffolds would result in the formation of alternative cardiac tissue that could replace the scar and improve cardiac function after MI in syngeneic heterotopic rat hearts. Rat hearts were explanted, subjected to left coronary descending artery occlusion, and then grafted into the abdomen (aorta-aorta anastomosis) of receiving syngeneic rat. After 2 weeks, a pouch of 3 mm2 was made in the thickness of the ventricular wall at the level of the post-infarction scar. The hyaluronic scaffold, previously engineered for 3 weeks with rat MSCs, was introduced into the pouch and the myocardial edges sutured with few stitches. Two weeks later we evaluated the cardiac function by M-Mode echocardiography and the myocardial morphology by microscope analysis. We chose bone marrow-derived mensenchymal stem cells (MSCs) because they have shown great signaling and regenerative properties when delivered to heart tissue following a myocardial infarction (MI). However, while the object of cell transplantation is to improve ventricular function, cardiac cell transplantation has had limited success because of poor graft viability and low cell retention, that’s why we decided to combine MSCs with a biopolimeric scaffold. At the end of the experiments we observed that the hyaluronan fibres had not been substantially degraded 2 weeks after heart-transplantation. Most MSCs had migrated to the surrounding infarcted area where they were especially found close to small-sized vessels. Scar tissue was moderated in the engrafted region and the thickness of the corresponding ventricular wall was comparable to that of the non-infarcted remote area. Also, the left ventricular shortening fraction, evaluated by M-Mode echocardiography, was found a little bit increased when compared to that measured just before construct transplantation. Therefore, this study suggests that post-infarction myocardial remodelling can be favourably affected by the grafting of MSCs delivered through a hyaluron-based scaffold