5 resultados para Copper. Heavy metal. Galvanic effluents. Anionic surfactant. Removal
em AMS Tesi di Dottorato - Alm@DL - Università di Bologna
Resumo:
This final thesis is aimed at summarizing the research program I have carried out during my PhD studies, that has been dealing with the design, the preparation, characterization and applications of new Re(I), Ru(II), and Ir(III) metal complexes containing anionic ligands such as 5-aryl tetrazolates [R-CN4]- or their neutral analogues, N-alkyltetrazoles [R-CN4-R1]. Chapter 1 consists of a brief introduction on tetrazoles and metal-tetrazolato complexes, and on the photophysical properties of d6 transition metal complexes. In chapter 2, the synthesis, characterization and study of the photophysical properties of new luminescent Ir(III)-tetrazolate complexes are discussed. Moreover, the application of one of the new Ir(III)-CN complexes as emissive core in the fabrication of an OLED device is reported. In chapter 3, the study of the antimicrobial activity of new Ru(II)-alkyltetrazole complexes is reported. When the pentatomic ring was substituted with a long alkyl residue, antimicrobial activity toward Deinococcus radiodurans was observed. In chapter 4, a new family of luminescent Re(I)-tetrazolate complexes is reported. In this study, different N-alkyl tetrazoles play the role of diimine (diim) ligands in the preparation of new Re(I) tricarbonyl complexes. In addition, absorption and emission titration experiments were performed to study their interaction with Bovine Serum Albumin (BSA). In chapter 5, the synthesis and characterization of new luminescent Re(I)-tetrazolate complexes are discussed. The use of sulfonated diimine ligands in the preparation of new Re(I) tricarbonyl complexes led to the first example Re(I) complexes for the luminescent staining of proteins. In chapter 6, the synthesis, a new family of Ir(III)-NO2 tetrazole complexes displaying unexpected photophysical properties are discussed. Moreover, the possibility to tune the luminescent output of such systems upon chemical modification of the pending nitro group was verified by performing reduction tests with sodium dithionite; this represents encouraging evidence for their possible application as hypoxia-responsive luminescent probes in bioimaging.
Resumo:
Over the course of evolution, Nature has elegantly learned to use light to drive chemical reactions. On the other hand, humans have only recently started learning how to play with this powerful tool to carry out chemical transformations. In particular, a step forward was possible thanks to molecules and materials that can absorb light and trigger a series of processes that can drive chemical reactions. However, scarce elements are extensively employed in the design of most of these compounds and considerations on their scarcity and toxicity have sparked interest on alternatives based on earth-abundant elements. In this framework, the focus of this thesis has been the development and employment of heavy-metal free chromophores and of earth-abundant oxides. The first chapter regards the functionalization of boron-dipyrromethenes (BODIPYs) so as to allow access to their triplet excited state and tune their redox potentials, which was achieved thanks to the design of orthogonal donor-acceptor dyads. The BODIPY dyads were used to promote a photoredox reaction, and the mechanism of the reaction was clarified. In the second chapter, organic chromophores that display thermally-activated delayed fluorescence (TADF) were studied. These were used to perform enantioselective photoredox reactions, and a mechanistic investigation allowed to elucidate the fate of these photosensitizers in the reaction. Thanks to their stronger reducing power, it was possible to demonstrate the employability of TADF dyes in artificial photosynthesis, as well. Last, the oxidation of biomass-derived compounds was studied in a photoelectrochemical cell. For this purpose, hematite photoanodes were synthesized in collaboration with Prof. Caramori’s group at the University of Ferrara (Italy) and they were tested in the presence of a redox mediator. In addition to this, the possibility of repurposing a copper(II) water oxidation catalyst for the oxidation of biomass was investigated in collaboration with Prof. Llobet’s group at ICIQ (Tarragona, Spain).
Resumo:
Throughout the world, pressures on water resources are increasing, mainly as a result of human activity. Because of their accessibility, groundwater and surface water are the most used reservoirs. The evaluation of the water quality requires the identification of the interconnections among the water reservoirs, natural landscape features, human activities and aquatic health. This study focuses on the estimation of the water pollution linked to two different environmental issues: salt water intrusion and acid mine drainage related to the exploitation of natural resources. Effects of salt water intrusion occurring in the shallow aquifer north of Ravenna (Italy) was analysed through the study of ion- exchange occurring in the area and its variance throughout the year, applying a depth-specific sampling method. In the study area were identified ion exchange, calcite and dolomite precipitation, and gypsum dissolution and sulphate reduction as the main processes controlling the groundwater composition. High concentrations of arsenic detected only at specific depth indicate its connexion with the organic matter. Acid mine drainage effects related to the tin extraction in the Bolivian Altiplano was studied, on water and sediment matrix. Water contamination results strictly dependent on the seasonal variation, on pH and redox conditions. During the dry season the strong evaporation and scarce water flow lead to low pH values, high concentrations of heavy metals in surface waters and precipitation of secondary minerals along the river, which could be released in oxidizing conditions as demonstrated through the sequential extraction analysis. The increase of the water flow during the wet season lead to an increase of pH values and a decrease in heavy metal concentrations, due to dilution effect and, as e.g. for the iron, to precipitation.
Resumo:
Obiettivo del lavoro è stato lo sviluppo e la validazione di nuovi bioassay e biomarker quali strumenti da utilizzare in un approccio ecotossicologico integrato per il biomonitoraggio di ambienti marino-costieri interessati da impatto antropico negli organismi che vivono in tali ambienti. L’ambiente reale impiegato per l’applicazione in campo è la Rada di Augusta (Siracusa, Italia). Una batteria di bioassay in vivo e in vitro è stata indagata quale strumento di screening per la misura della tossicità dei sedimenti. La batteria selezionata ha dimostrato di possedere i requisiti necessari ad un applicazione di routine nel monitoraggio di ambienti marino costieri. L’approccio multimarker basato sull’impiego dell’organismo bioindicatore Mytilus galloprovincialis in esperimenti di traslocazione ha consentito di valutare il potenziale applicativo di nuovi biomarker citologici e molecolari di stress chimico parallelamente a biomarker standardizzati di danno genotossico ed esposizione a metalli pesanti. I mitili sono stati traslocati per 45 giorni nei siti di Brucoli (SR) e Rada di Augusta, rispettivamente sito di controllo e sito impattato. I risultati ottenuti supportano l’applicabilità delle alterazioni morfometriche dei granulociti quale biomarker di effetto, direttamente correlato allo stato di salute degli organismi che vivono in un dato ambiente. Il significativo incremento dell’area dei lisosomi osservato contestualmente potrebbe riflettere un incremento dei processi degradativi e dei processi autofagici. I dati sulla sensibilità in campo suggeriscono una valida applicazione della misura dell’attività di anidrasi carbonica in ghiandola digestiva come biomarker di stress in ambiente marino costiero. L’utilizzo delle due metodologie d’indagine (bioassay e biomarker) in un approccio ecotossicologico integrato al biomonitoraggio di ambienti marino-costieri offre uno strumento sensibile e specifico per la valutazione dell’esposizione ad inquinanti e del danno potenziale esercitato dagli inquinanti sugli organismi che vivono in un dato ambiente, permettendo interventi a breve termine e la messa a punto di adeguati programmi di gestione sostenibile dell’ambiente.
Resumo:
Heavy Liquid Metal Cooled Reactors are among the concepts, fostered by the GIF, as potentially able to comply with stringent safety, economical, sustainability, proliferation resistance and physical protection requirements. The increasing interest around these innovative systems has highlighted the lack of tools specifically dedicated to their core design stage. The present PhD thesis summarizes the three years effort of, partially, closing the mentioned gap, by rationally defining the role of codes in core design and by creating a development methodology for core design-oriented codes (DOCs) and its subsequent application to the most needed design areas. The covered fields are, in particular, the fuel assembly thermal-hydraulics and the fuel pin thermo-mechanics. Regarding the former, following the established methodology, the sub-channel code ANTEO+ has been conceived. Initially restricted to the forced convection regime and subsequently extended to the mixed one, ANTEO+, via a thorough validation campaign, has been demonstrated a reliable tool for design applications. Concerning the fuel pin thermo-mechanics, the will to include safety-related considerations at the outset of the pin dimensioning process, has given birth to the safety-informed DOC TEMIDE. The proposed DOC development methodology has also been applied to TEMIDE; given the complex interdependence patterns among the numerous phenomena involved in an irradiated fuel pin, to optimize the code final structure, a sensitivity analysis has been performed, in the anticipated application domain. The development methodology has also been tested in the verification and validation phases; the latter, due to the low availability of experiments truly representative of TEMIDE's application domain, has only been a preliminary attempt to test TEMIDE's capabilities in fulfilling the DOC requirements upon which it has been built. In general, the capability of the proposed development methodology for DOCs in delivering tools helping the core designer in preliminary setting the system configuration has been proven.