8 resultados para Copper and iron

em AMS Tesi di Dottorato - Alm@DL - Università di Bologna


Relevância:

100.00% 100.00%

Publicador:

Resumo:

The Reverse Vaccinology (RV) approach allows using genomic information for the delineation of new protein-based vaccines starting from an in silico analysis. The first powerful example of the application of the RV approach is given by the development of a protein-based vaccine against serogroup B Meningococcus. A similar approach was also used to identify new Staphylococcus aureus vaccine candidates, including the ferric hydroxamate-binding lipoprotein FhuD2. S. aureus is a widespread human pathogen, which employs various different strategies for iron uptake, including: (i) siderophore-mediated iron acquisition using the endogenous siderophores staphyloferrin A and B, (ii) siderophore-mediated iron acquisition using xeno-siderophores (the pathway exploited by FhuD2) and (iii) heme-mediated iron acquisition. In this work the high resolution crystal structure of FhuD2 in the iron (III)-siderophore-bound form was determined. FhuD2 belongs to the Periplasmic Binding Protein family (PBP ) class III, and is principally formed by two globular domains, at the N- and C-termini of the protein, that make up a cleft where ferrichrome-iron (III) is bound. The N- and C-terminal domains, connected by a single long α-helix, present Rossmann-like folds, showing a β-stranded core and an α-helical periphery, which do not undergo extensive structural rearrangement when they interact with the ligand, typical of class III PBP members. The structure shows that ferrichrome-bound iron does not come directly into contact with the protein; rather, the metal ion is fully coordinated by six oxygen donors of the hydroxamate groups of three ornithine residues, which, with the three glycine residues, make up the peptide backbone of ferrichrome. Furthermore, it was found that iron-free ferrichrome is able to subtract iron from transferrin. This study shows for the first time the structure of FhuD2, which was found to bind to siderophores ,and that the protein plays an important role in S. aureus colonization and infection phases.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

The Ctr family is an essential part of the copper homeostasis machinery and its members share sequence homology and structural and functional features. Higher eukaryotes express two members of this family Ctr1 and Ctr2. Numerous structural and functional studies are available for Ctr1, the only high affinity Cu(I) transporter thus far identified. Ctr1 holigotrimers mediate cellular copper uptake and this protein was demonstrated to be essential for embryonic development and to play a crucial role in dietary copper acquisition. Instead very little is known about Ctr2, it bears structural homology to the yeast vacuolar copper transporter, which mediates mobilization of vacuolar copper stores. Recent studies using over-expressed epitope-tagged forms of human Ctr2 suggested a function as a low affinity copper transporter that can mediate either copper uptake from the extracellular environment or mobilization of lysosomal copper stores. Using an antibody that recognizes endogenous mouse Ctr2, we studied the expression and localization of endogenous mouse Ctr2 in cell culture and in mouse models to understand its regulation and function in copper homeostasis. By immunoblot we observed a regulation of mCtr2 protein levels in a copper and Ctr1 dependent way. Our observations in cells and transgenic mice suggest that lack of Ctr1 induces a strong downregulation of Ctr2 probably by a post-translational mechanism. By indirect immunofluorescence we observed an exclusive intracellular localization in a perinuclear compartment and no co-localization with lysosomal markers. Immunofluorescence experiments in Ctr1 null cells, supported by sequence analysis, suggest that lysosomes may play a role in mCtr2 biology not as resident compartment, but as a degradation site. In appendix a LC-mass method for analysis of algal biotoxins belonging to the family of PsP (paralytic shellfish poisoning) is described.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

The ferric uptake regulator protein Fur regulates iron-dependent gene expression in bacteria. In the human pathogen Helicobacter pylori, Fur has been shown to regulate iron-induced and iron-repressed genes. Herein we investigate the molecular mechanisms that control this differential iron-responsive Fur regulation. Hydroxyl radical footprinting showed that Fur has different binding architectures, which characterize distinct operator typologies. On operators recognized with higher affinity by holo-Fur, the protein binds to a continuous AT-rich stretch of about 20 bp, displaying an extended protection pattern. This is indicative of protein wrapping around the DNA helix. DNA binding interference assays with the minor groove binding drug distamycin A, point out that the recognition of the holo-operators occurs through the minor groove of the DNA. By contrast, on the apo-operators, Fur binds primarily to thymine dimers within a newly identified TCATTn10TT consensus element, indicative of Fur binding to one side of the DNA, in the major groove of the double helix. Reconstitution of the TCATTn10TT motif within a holo-operator results in a feature binding swap from an holo-Fur- to an apo-Fur-recognized operator, affecting both affinity and binding architecture of Fur, and conferring apo-Fur repression features in vivo. Size exclusion chromatography indicated that Fur is a dimer in solution. However, in the presence of divalent metal ions the protein is able to multimerize. Accordingly, apo-Fur binds DNA as a dimer in gel shift assays, while in presence of iron, higher order complexes are formed. Stoichiometric Ferguson analysis indicates that these complexes correspond to one or two Fur tetramers, each bound to an operator element. Together these data suggest that the apo- and holo-Fur repression mechanisms apparently rely on two distinctive modes of operator-recognition, involving respectively the readout of a specific nucleotide consensus motif in the major groove for apo-operators, and the recognition of AT-rich stretches in the minor groove for holo-operators, whereas the iron-responsive binding affinity is controlled through metal-dependent shaping of the protein structure in order to match preferentially the major or the minor groove.

Relevância:

90.00% 90.00%

Publicador:

Resumo:

Bacterial small regulatory RNAs (sRNAs) are posttranscriptional regulators involved in stress responses. These short non-coding transcripts are synthesised in response to a signal, and control gene expression of their regulons by modulating the translation or stability of the target mRNAs, often in concert with the RNA chaperone Hfq. Characterization of a Hfq knock out mutant in Neisseria meningitidis revealed that it has a pleiotropic phenotype, suggesting a major role for Hfq in adaptation to stresses and virulence and the presence of Hfq-dependent sRNA activity. Global gene expression analysis of regulated transcripts in the Hfq mutant revealed the presence of a regulated sRNA, incorrectly annotated as an open reading frame, which we renamed AniS. The synthesis of this novel sRNA is anaerobically induced through activation of its promoter by the FNR global regulator and through global gene expression analyses we identified at least two predicted mRNA targets of AniS. We also performed a detailed molecular analysis of the action of the sRNA NrrF,. We demonstrated that NrrF regulates succinate dehydrogenase by forming a duplex with a region of complementarity within the sdhDA region of the succinate dehydrogenase transcript, and Hfq enhances the binding of this sRNA to the identified target in the sdhCDAB mRNA; this is likely to result in rapid turnover of the transcript in vivo. In addition, in order to globally investigate other possible sRNAs of N. meningitdis we Deep-sequenced the transcriptome of this bacterium under both standard in vitro and iron-depleted conditions. This analysis revealed genes that were actively transcribed under the two conditions. We focused our attention on the transcribed non-coding regions of the genome and, along with 5’ and 3’ untranslated regions, 19 novel candidate sRNAs were identified. Further studies will be focused on the identification of the regulatory networks of these sRNAs, and their targets.

Relevância:

90.00% 90.00%

Publicador:

Resumo:

The demand of energy, fuels and chemicals is increasing due to the strong growth of some countries in the developing world and the development of the world economy. Unfortunately, the general picture derived sparked an exponential increase in crude oil prices with a consequent increase of the chemical, by-products and energy, depleting the global market. Nowadays biomass are the most promising alternative to fossil fuels for the production of chemicals and fuels. In this work, the development of three different catalytic processes for the valorization of biomass-derived has been investigated. 5-hydroxymethylfurfural oxidation was studied under mild reaction condition using gold and gold/copper based catalysts synthetized from pre-formed nanoparticles and supported onto TiO2 and CeO2. The analysis conducted on catalysts showed the formation of alloys gold/copper and a strong synergistic effect between the two metals. For this reason the bimetallic catalysts supported on titania showed a higher catalytic activity respect to the monometallic catalysts. The process for the production of 2,5-bishydroxymethyl furan (BHMF) was also optimized by means the 5-hydroxymethylfurfural hydrogenation using the Shvo complex. Complete conversion of HMF was achieved working at 90 °C and 10 bar of hydrogen. The complex was found to be re-usable for at least three catalytic cycles without suffering any type of deactivation. Finally, the hydrogenation of furfural and HMF was carried out, developing the process of hydrogen transfer by using MgO as a catalyst and methanol as a hydrogen donor. Quantitative yields to alcohols have been achieved in a few hours working in mild condition: 160 °C and at autogenous pressure. The only by-products formed were light products such as CO, CO2 and CH4 (products derived from methanol transformation), easily separable from the reaction solution depressurizing the reactor.

Relevância:

90.00% 90.00%

Publicador:

Resumo:

In the central nervous system, iron in several proteins is involved in many important processes: oxygen transportation, oxidative phosphorylation, mitochondrial respiration, myelin production, the synthesis and metabolism of neurotransmitters. Abnormal iron homoeostasis can induce cellular damage through hydroxyl radical production, which can cause the oxidation, modification of lipids, proteins, carbohydrates, and DNA, lead to neurotoxicity. Moreover increased levels of iron are harmful and iron accumulations are typical hallmarks of brain ageing and several neurodegenerative disorders particularly PD. Numerous studies on post mortem tissue report on an increased amount of total iron in the substantia nigra in patients with PD also supported by large body of in vivo findings from Magnetic Resonance Imaging (MRI) studies. The importance and approaches for in vivo brain iron assessment using multiparametric MRI is increased over last years. Quantitative MRI may provide useful biomarkers for brain integrity assessment in iron-related neurodegeneration. Particularly, a prominent change in iron- sensitive T2* MRI contrast within the sub areas of the SN overlapping with nigrosome 1 were shown to be a hallmark of Parkinson's Disease with high diagnostic accuracy. Moreover, differential diagnosis between Parkinson's Disease (PD) and atypical parkinsonian syndromes (APS) remains challenging, mainly in the early phases of the disease. Advanced brain MR imaging enables to detect the pathological changes of nigral and extranigral structures at the onset of clinical manifestations and during the course of the disease. The Nigrosome-1 (N1) is a substructure of the healthy Substantia Nigra pars compacta enriched by dopaminergic neurons; their loss in Parkinson’s disease and atypical parkinsonian syndromes is related to the iron accumulation. N1 changes are supportive MR biomarkers for diagnosis of these neurodegenerative disorders, but its detection is hard with conventional sequences, also using high field (3T) scanner. Quantitative susceptibility mapping (QSM), an iron-sensitive technique, enables the direct detection of Neurodegeneration

Relevância:

90.00% 90.00%

Publicador:

Resumo:

Trace Elements (TEs) pollution is a significant environmental concern due to its toxic effects on human and ecosystem health and its potential to bioaccumulate in the food chain and to threaten species survival, leading to a decline in biodiversity. Urban areas, industrial and mining activities, agricultural practices, all contribute to the release of TEs into the environment posing a significant risk to human health and ecosystems. Several techniques have been developed to control TEs into the environment. This work presents the findings of three-year PhD program that focused on research on TEs pollution. The study discusses three fundamental aspects related to this topic from the perspective of sustainable development, environmental and human health. (1) High levels of TEs contamination prevent the use of sewage sludge (SS) as a fertilizer in agriculture, despite its potential as a soil amendment. Developing effective techniques to manage TEs contamination in SS is critical to ensure its safe use in agriculture and promote resource efficiency through sludge reuse. Another purpose of the study was to evaluate different strategies to limit the TEs uptake by horticultural crops (specifically, Cucumis Melo L.). This study addressed the effect of seasonality, Trichoderma inoculation and clinoptilolite application on chromium (Cr), copper (Cu) and lead (Pb) content of early- and late-ripening cultivars of Cucumis Melo L.. Finally, the accumulation of copper and the effect of its bioavailable fraction on bacterial and fungal communities in the rhizosphere soil of two vineyards, featuring two different varieties of Vitis vinifera grown for varying lengths of time, were evaluated.

Relevância:

90.00% 90.00%

Publicador:

Resumo:

This thesis reports three experimental studies that may contribute to understand how the sources or types of dietary fibres (DFs) included in sow diet with similar level of total DFs influence the composition of colostrum and milk and their related effects on offspring performance and gut microbiota. The first study showed that decreasing the level of hemicelluloses (HCs) in sow’s lactation diet increased the proportion of butyrate and the concentration of volatile fatty acids (VFAs), copper and threonine in milk. Simultaneously, the post-weaning growth of low birthweight piglets was improved, and the diarrhoea occurrence was reduced during the second week post-weaning. The second study showed that the level of HCs in the diet of lactating sows affected their faecal microbiota, modified the VFA profile in sow’s faeces during lactation and barely impacted the faecal microbiota of slow and fast growing piglets. The third study showed that replacing a source soluble DFs by one of insoluble DFs in sow’s diet during late gestation and lactation reduced farrowing duration, increased total VFAs and lactoferrin concentrations in colostrum, improved growth performance from birth to 1 day of lactation, during the post-weaning period and throughout the study, and reduced diarrhoea occurrence during the first week post-weaning. Finally, a fourth study proposed a workflow to analyse low biomass samples from the umbilical cord blood aiming at investigating the existence of a pre-birth microbiota with no substantial findings to confirm this hypothesis. Overall, the results of these studies confirmed that, besides the level of DFs, the sources, and the types of DFs included in the sow's diet shape the sow's microbiota, influence the composition of colostrum and milk, and improve offspring performance, but with limited impacts on the microbiota of piglets.