9 resultados para Convolutional Neural Networks
em AMS Tesi di Dottorato - Alm@DL - Università di Bologna
Resumo:
Machine learning is widely adopted to decode multi-variate neural time series, including electroencephalographic (EEG) and single-cell recordings. Recent solutions based on deep learning (DL) outperformed traditional decoders by automatically extracting relevant discriminative features from raw or minimally pre-processed signals. Convolutional Neural Networks (CNNs) have been successfully applied to EEG and are the most common DL-based EEG decoders in the state-of-the-art (SOA). However, the current research is affected by some limitations. SOA CNNs for EEG decoding usually exploit deep and heavy structures with the risk of overfitting small datasets, and architectures are often defined empirically. Furthermore, CNNs are mainly validated by designing within-subject decoders. Crucially, the automatically learned features mainly remain unexplored; conversely, interpreting these features may be of great value to use decoders also as analysis tools, highlighting neural signatures underlying the different decoded brain or behavioral states in a data-driven way. Lastly, SOA DL-based algorithms used to decode single-cell recordings rely on more complex, slower to train and less interpretable networks than CNNs, and the use of CNNs with these signals has not been investigated. This PhD research addresses the previous limitations, with reference to P300 and motor decoding from EEG, and motor decoding from single-neuron activity. CNNs were designed light, compact, and interpretable. Moreover, multiple training strategies were adopted, including transfer learning, which could reduce training times promoting the application of CNNs in practice. Furthermore, CNN-based EEG analyses were proposed to study neural features in the spatial, temporal and frequency domains, and proved to better highlight and enhance relevant neural features related to P300 and motor states than canonical EEG analyses. Remarkably, these analyses could be used, in perspective, to design novel EEG biomarkers for neurological or neurodevelopmental disorders. Lastly, CNNs were developed to decode single-neuron activity, providing a better compromise between performance and model complexity.
Resumo:
Spiking Neural Networks (SNNs) are bio-inspired Artificial Neural Networks (ANNs) utilizing discrete spiking signals, akin to neuron communication in the brain, making them ideal for real-time and energy-efficient Cyber-Physical Systems (CPSs). This thesis explores their potential in Structural Health Monitoring (SHM), leveraging low-cost MEMS accelerometers for early damage detection in motorway bridges. The study focuses on Long Short-Term SNNs (LSNNs), although their complex learning processes pose challenges. Comparing LSNNs with other ANN models and training algorithms for SHM, findings indicate LSNNs' effectiveness in damage identification, comparable to ANNs trained using traditional methods. Additionally, an optimized embedded LSNN implementation demonstrates a 54% reduction in execution time, but with longer pre-processing due to spike-based encoding. Furthermore, SNNs are applied in UAV obstacle avoidance, trained directly using a Reinforcement Learning (RL) algorithm with event-based input from a Dynamic Vision Sensor (DVS). Performance evaluation against Convolutional Neural Networks (CNNs) highlights SNNs' superior energy efficiency, showing a 6x decrease in energy consumption. The study also investigates embedded SNN implementations' latency and throughput in real-world deployments, emphasizing their potential for energy-efficient monitoring systems. This research contributes to advancing SHM and UAV obstacle avoidance through SNNs' efficient information processing and decision-making capabilities within CPS domains.
Resumo:
There are only a few insights concerning the influence that agronomic and management variability may have on superficial scald (SS) in pears. Abate Fétel pears were picked during three seasons (2018, 2019 and 2020) from thirty commercial orchards in the Emilia Romagna region, Italy. Using a multivariate statistical approach, high heterogeneity between farms for SS development after cold storage with regular atmosphere was demonstrated. Indeed, some factors seem to affect SS in all growing seasons: high yields, soil texture, improper irrigation and Nitrogen management, use of plant growth regulators, late harvest, precipitations, Calcium and cow manure, presence of nets, orchard age, training system and rootstock. Afterwards, we explored the spatio/temporal variability of fruit attributes in two pear orchards. Environmental and physiological spatial variables were recorded by a portable RTK GPS. High spatial variability of the SS index was observed. Through a geostatistical approach, some characteristics, including soil electrical conductivity and fruit size, have been shown to be negatively correlated with SS. Moreover, regression tree analyses were applied suggesting the presence of threshold values of antioxidant capacity, total phenolic content, and acidity against SS. High pulp firmness and IAD values before storage, denoting a more immature fruit, appeared to be correlated with low SS. Finally, a convolution neural networks (CNN) was tested to detect SS and the starch pattern index (SPI) in pears for portable device applications. Preliminary statistics showed that the model for SS had low accuracy but good precision, and the CNN for SPI denoted good performances compared to the Ctifl and Laimburg scales. The major conclusion is that Abate Fétel pears can potentially be stored in different cold rooms, according to their origin and quality features, ensuring the best fruit quality for the final consumers. These results might lead to a substantial improvement in the Italian pear industry.
Resumo:
Nowadays robotic applications are widespread and most of the manipulation tasks are efficiently solved. However, Deformable-Objects (DOs) still represent a huge limitation for robots. The main difficulty in DOs manipulation is dealing with the shape and dynamics uncertainties, which prevents the use of model-based approaches (since they are excessively computationally complex) and makes sensory data difficult to interpret. This thesis reports the research activities aimed to address some applications in robotic manipulation and sensing of Deformable-Linear-Objects (DLOs), with particular focus to electric wires. In all the works, a significant effort was made in the study of an effective strategy for analyzing sensory signals with various machine learning algorithms. In the former part of the document, the main focus concerns the wire terminals, i.e. detection, grasping, and insertion. First, a pipeline that integrates vision and tactile sensing is developed, then further improvements are proposed for each module. A novel procedure is proposed to gather and label massive amounts of training images for object detection with minimal human intervention. Together with this strategy, we extend a generic object detector based on Convolutional-Neural-Networks for orientation prediction. The insertion task is also extended by developing a closed-loop control capable to guide the insertion of a longer and curved segment of wire through a hole, where the contact forces are estimated by means of a Recurrent-Neural-Network. In the latter part of the thesis, the interest shifts to the DLO shape. Robotic reshaping of a DLO is addressed by means of a sequence of pick-and-place primitives, while a decision making process driven by visual data learns the optimal grasping locations exploiting Deep Q-learning and finds the best releasing point. The success of the solution leverages on a reliable interpretation of the DLO shape. For this reason, further developments are made on the visual segmentation.
Resumo:
Deep Neural Networks (DNNs) have revolutionized a wide range of applications beyond traditional machine learning and artificial intelligence fields, e.g., computer vision, healthcare, natural language processing and others. At the same time, edge devices have become central in our society, generating an unprecedented amount of data which could be used to train data-hungry models such as DNNs. However, the potentially sensitive or confidential nature of gathered data poses privacy concerns when storing and processing them in centralized locations. To this purpose, decentralized learning decouples model training from the need of directly accessing raw data, by alternating on-device training and periodic communications. The ability of distilling knowledge from decentralized data, however, comes at the cost of facing more challenging learning settings, such as coping with heterogeneous hardware and network connectivity, statistical diversity of data, and ensuring verifiable privacy guarantees. This Thesis proposes an extensive overview of decentralized learning literature, including a novel taxonomy and a detailed description of the most relevant system-level contributions in the related literature for privacy, communication efficiency, data and system heterogeneity, and poisoning defense. Next, this Thesis presents the design of an original solution to tackle communication efficiency and system heterogeneity, and empirically evaluates it on federated settings. For communication efficiency, an original method, specifically designed for Convolutional Neural Networks, is also described and evaluated against the state-of-the-art. Furthermore, this Thesis provides an in-depth review of recently proposed methods to tackle the performance degradation introduced by data heterogeneity, followed by empirical evaluations on challenging data distributions, highlighting strengths and possible weaknesses of the considered solutions. Finally, this Thesis presents a novel perspective on the usage of Knowledge Distillation as a mean for optimizing decentralized learning systems in settings characterized by data heterogeneity or system heterogeneity. Our vision on relevant future research directions close the manuscript.
Resumo:
Machine Learning makes computers capable of performing tasks typically requiring human intelligence. A domain where it is having a considerable impact is the life sciences, allowing to devise new biological analysis protocols, develop patients’ treatments efficiently and faster, and reduce healthcare costs. This Thesis work presents new Machine Learning methods and pipelines for the life sciences focusing on the unsupervised field. At a methodological level, two methods are presented. The first is an “Ab Initio Local Principal Path” and it is a revised and improved version of a pre-existing algorithm in the manifold learning realm. The second contribution is an improvement over the Import Vector Domain Description (one-class learning) through the Kullback-Leibler divergence. It hybridizes kernel methods to Deep Learning obtaining a scalable solution, an improved probabilistic model, and state-of-the-art performances. Both methods are tested through several experiments, with a central focus on their relevance in life sciences. Results show that they improve the performances achieved by their previous versions. At the applicative level, two pipelines are presented. The first one is for the analysis of RNA-Seq datasets, both transcriptomic and single-cell data, and is aimed at identifying genes that may be involved in biological processes (e.g., the transition of tissues from normal to cancer). In this project, an R package is released on CRAN to make the pipeline accessible to the bioinformatic Community through high-level APIs. The second pipeline is in the drug discovery domain and is useful for identifying druggable pockets, namely regions of a protein with a high probability of accepting a small molecule (a drug). Both these pipelines achieve remarkable results. Lastly, a detour application is developed to identify the strengths/limitations of the “Principal Path” algorithm by analyzing Convolutional Neural Networks induced vector spaces. This application is conducted in the music and visual arts domains.
Resumo:
In highly urbanized coastal lowlands, effective site characterization is crucial for assessing seismic risk. It requires a comprehensive stratigraphic analysis of the shallow subsurface, coupled with the precise assessment of the geophysical properties of buried deposits. In this context, late Quaternary paleovalley systems, shallowly buried fluvial incisions formed during the Late Pleistocene sea-level fall and filled during the Holocene sea-level rise, are crucial for understanding seismic amplification due to their soft sediment infill and sharp lithologic contrasts. In this research, we conducted high-resolution stratigraphic analyses of two regions, the Pescara and Manfredonia areas along the Adriatic coastline of Italy, to delineate the geometries and facies architecture of two paleovalley systems. Furthermore, we carried out geophysical investigations to characterize the study areas and perform seismic response analyses. We tested the microtremor-based horizontal-to-vertical spectral ratio as a mapping tool to reconstruct the buried paleovalley geometries. We evaluated the relationship between geological and geophysical data and identified the stratigraphic surfaces responsible for the observed resonances. To perform seismic response analysis of the Pescara paleovalley system, we integrated the stratigraphic framework with microtremor and shear wave velocity measurements. The seismic response analysis highlights strong seismic amplifications in frequency ranges that can interact with a wide variety of building types. Additionally, we explored the applicability of artificial intelligence in performing facies analysis from borehole images. We used a robust dataset of high-resolution digital images from continuous sediment cores of Holocene age to outline a novel, deep-learning-based approach for performing automatic semantic segmentation directly on core images, leveraging the power of convolutional neural networks. We propose an automated model to rapidly characterize sediment cores, reproducing the sedimentologist's interpretation, and providing guidance for stratigraphic correlation and subsurface reconstructions.
Resumo:
Neural representations (NR) have emerged in the last few years as a powerful tool to represent signals from several domains, such as images, 3D shapes, or audio. Indeed, deep neural networks have been shown capable of approximating continuous functions that describe a given signal with theoretical infinite resolution. This finding allows obtaining representations whose memory footprint is fixed and decoupled from the resolution at which the underlying signal can be sampled, something that is not possible with traditional discrete representations, e.g., grids of pixels for images or voxels for 3D shapes. During the last two years, many techniques have been proposed to improve the capability of NR to approximate high-frequency details and to make the optimization procedures required to obtain NR less demanding both in terms of time and data requirements, motivating many researchers to deploy NR as the main form of data representation for complex pipelines. Following this line of research, we first show that NR can approximate precisely Unsigned Distance Functions, providing an effective way to represent garments that feature open 3D surfaces and unknown topology. Then, we present a pipeline to obtain in a few minutes a compact Neural Twin® for a given object, by exploiting the recent advances in modeling neural radiance fields. Furthermore, we move a step in the direction of adopting NR as a standalone representation, by considering the possibility of performing downstream tasks by processing directly the NR weights. We first show that deep neural networks can be compressed into compact latent codes. Then, we show how this technique can be exploited to perform deep learning on implicit neural representations (INR) of 3D shapes, by only looking at the weights of the networks.
Resumo:
Most cognitive functions require the encoding and routing of information across distributed networks of brain regions. Information propagation is typically attributed to physical connections existing between brain regions, and contributes to the formation of spatially correlated activity patterns, known as functional connectivity. While structural connectivity provides the anatomical foundation for neural interactions, the exact manner in which it shapes functional connectivity is complex and not yet fully understood. Additionally, traditional measures of directed functional connectivity only capture the overall correlation between neural activity, and provide no insight on the content of transmitted information, limiting their ability in understanding neural computations underlying the distributed processing of behaviorally-relevant variables. In this work, we first study the relationship between structural and functional connectivity in simulated recurrent spiking neural networks with spike timing dependent plasticity. We use established measures of time-lagged correlation and overall information propagation to infer the temporal evolution of synaptic weights, showing that measures of dynamic functional connectivity can be used to reliably reconstruct the evolution of structural properties of the network. Then, we extend current methods of directed causal communication between brain areas, by deriving an information-theoretic measure of Feature-specific Information Transfer (FIT) quantifying the amount, content and direction of information flow. We test FIT on simulated data, showing its key properties and advantages over traditional measures of overall propagated information. We show applications of FIT to several neural datasets obtained with different recording methods (magneto and electro-encephalography, spiking activity, local field potentials) during various cognitive functions, ranging from sensory perception to decision making and motor learning. Overall, these analyses demonstrate the ability of FIT to advance the investigation of communication between brain regions, uncovering the previously unaddressed content of directed information flow.