20 resultados para Continuous steam injection and reservoir simulation
em AMS Tesi di Dottorato - Alm@DL - Università di Bologna
Resumo:
T2Well-ECO2M is a coupled wellbore reservoir simulator still under development at Lawrence Berkeley National Laboratory (USA) with the ability to deal with a mixture of H2O-CO2-NaCl and includes the simulation of CO2 phase transition and multiphase flow. The code was originally developed for the simulation of CO2 injection into deep saline aquifers and the modelling of enhanced geothermal systems; however, the focus of this research was to modify and test T2Well-ECO2M to simulate CO2 injection into depleted gas reservoirs. To this end, the original code was properly changed in a few parts and a dedicated injection case was developed to study CO2 phase transition inside of a wellbore and the corresponding thermal effects. In the first scenario, the injection case was run applying the fully numerical approach of wellbore to formation heat exchange calculation. Results were analysed in terms of wellbore pressure and temperature vertical profiles, wellhead and bottomhole conditions, and characteristic reservoir displacement fronts. Special attention was given to the thorough analysis of bottomhole temperature as the critical parameter for hydrate formation. Besides the expected direct effect of wellbore temperature changes on reservoir conditions, the simulation results indicated also the effect of CO2 phase change in the near wellbore zone on BH pressure distribution. To test the implemented software changes, in a second scenario, the same injection case was reproduced using the improved semi-analytical time-convolution approach for wellbore to formation heat exchange calculation. The comparison of the two scenarios showed that the simulation of wellbore and reservoir parameters after one year of continuous CO2 injection are in good agreement with the computation time to solve the time-convolution semi-analytical reduced. The new updated T2Well-ECO2M version has shown to be a robust and performing wellbore-reservoir simulator that can be also used to simulate the CO2 injection into depleted gas reservoirs.
Resumo:
The quench characteristics of second generation (2 G) YBCO Coated Conductor (CC) tapes are of fundamental importance for the design and safe operation of superconducting cables and magnets based on this material. Their ability to transport high current densities at high temperature, up to 77 K, and at very high fields, over 20 T, together with the increasing knowledge in their manufacturing, which is reducing their cost, are pushing the use of this innovative material in numerous system applications, from high field magnets for research to motors and generators as well as for cables. The aim of this Ph. D. thesis is the experimental analysis and numerical simulations of quench in superconducting HTS tapes and coils. A measurements facility for the characterization of superconducting tapes and coils was designed, assembled and tested. The facility consist of a cryostat, a cryocooler, a vacuum system, resistive and superconducting current leads and signal feedthrough. Moreover, the data acquisition system and the software for critical current and quench measurements were developed. A 2D model was developed using the finite element code COMSOL Multiphysics R . The problem of modeling the high aspect ratio of the tape is tackled by multiplying the tape thickness by a constant factor, compensating the heat and electrical balance equations by introducing a material anisotropy. The model was then validated both with the results of a 1D quench model based on a non-linear electric circuit coupled to a thermal model of the tape, to literature measurements and to critical current and quench measurements made in the cryogenic facility. Finally the model was extended to the study of coils and windings with the definition of the tape and stack homogenized properties. The procedure allows the definition of a multi-scale hierarchical model, able to simulate the windings with different degrees of detail.
Resumo:
Long air gaps containing a floating conductor are common insulation types in power grids. During the transmission line live-line work, the process of lineman entering the transmission line air gap constitutes a live-line work combined air gap, which is a typical long air gap containing a floating conductor. This thesis investigates the discharge characteristics, the discharge mechanism and a discharge simulation model of long air gaps containing a floating conductor in order to address the engineering issues in live-line work. The innovative achievements of the thesis are as follows: (1) The effect of the gap distance, the floating electrode structure, the switching impulse wavefront time, the altitude, and the deviation of the floating conductor from the axis on the breakdown voltage was determined. (2) The physical process of the discharges in long air gaps containing a floating conductor was determined. The reason why the discharge characteristics of long air gaps containing a floating electrode with complex geometrics and sharp protrusions and long air gaps with a rod-shaped floating electrode are similar has been studied. The formation mechanism of the lowest breakdown voltage area of a long air gap containing a floating conductor is explained. (3) A simulation discharge model of long air gaps containing a floating conductor was established, which can describe the physical process and predict the breakdown voltage. The model can realize the accurate prediction of the breakdown voltage of typical long air gaps containing a floating conductor and live-line work combined air gaps in transmission lines. The findings of the study can provide theoretical reference and technical support for improving the safety of live-line work.
Resumo:
The purpose of the first part of the research activity was to develop an aerobic cometabolic process in packed bed reactors (PBR) to treat real groundwater contaminated by trichloroethylene (TCE) and 1,1,2,2-tetrachloroethane (TeCA). In an initial screening conducted in batch bioreactors, different groundwater samples from 5 wells of the contaminated site were fed with 5 growth substrates. The work led to the selection of butane as the best growth substrate, and to the development and characterization from the site’s indigenous biomass of a suspended-cell consortium capable to degrade TCE with a 90 % mineralization of the organic chlorine. A kinetic study conducted in batch and continuous flow PBRs and led to the identification of the best carrier. A kinetic study of butane and TCE biodegradation indicated that the attached-cell consortium is characterized by a lower TCE specific degredation rates and by a lower level of mutual butane-TCE inhibition. A 31 L bioreactor was designed and set up for upscaling the experiment. The second part of the research focused on the biodegradation of 4 polymers, with and with-out chemical pre-treatments: linear low density polyethylene (LLDPE), polyethylene (PP), polystyrene (PS) and polyvinyl chloride (PVC). Initially, the 4 polymers were subjected to different chemical pre-treatments: ozonation and UV/ozonation, in gaseous and aqueous phase. It was found that, for LLDPE and PP, the coupling UV and ozone in gas phase is the most effective way to oxidize the polymers and to generate carbonyl groups on the polymer surface. In further tests, the effect of chemical pretreatment on polyner biodegrability was studied. Gas-phase ozonated and virgin polymers were incubated aerobically with: (a) a pure strain, (b) a mixed culture of bacteria; and (c) a fungal culture, together with saccharose as a co-substrate.
Resumo:
A servo-controlled automatic machine can perform tasks that involve synchronized actuation of a significant number of servo-axes, namely one degree-of-freedom (DoF) electromechanical actuators. Each servo-axis comprises a servo-motor, a mechanical transmission and an end-effector, and is responsible for generating the desired motion profile and providing the power required to achieve the overall task. The design of a such a machine must involve a detailed study from a mechatronic viewpoint, due to its electric and mechanical nature. The first objective of this thesis is the development of an overarching electromechanical model for a servo-axis. Every loss source is taken into account, be it mechanical or electrical. The mechanical transmission is modeled by means of a sequence of lumped-parameter blocks. The electric model of the motor and the inverter takes into account winding losses, iron losses and controller switching losses. No experimental characterizations are needed to implement the electric model, since the parameters are inferred from the data available in commercial catalogs. With the global model at disposal, a second objective of this work is to perform the optimization analysis, in particular, the selection of the motor-reducer unit. The optimal transmission ratios that minimize several objective functions are found. An optimization process is carried out and repeated for each candidate motor. Then, we present a novel method where the discrete set of available motor is extended to a continuous domain, by fitting manufacturer data. The problem becomes a two-dimensional nonlinear optimization subject to nonlinear constraints, and the solution gives the optimal choice for the motor-reducer system. The presented electromechanical model, along with the implementation of optimization algorithms, forms a complete and powerful simulation tool for servo-controlled automatic machines. The tool allows for determining a wide range of electric and mechanical parameters and the behavior of the system in different operating conditions.
Resumo:
Nowadays the development of new Internal Combustion Engines is mainly driven by the need to reduce tailpipe emissions of pollutants, Green-House Gases and avoid the fossil fuels wasting. The design of dimension and shape of the combustion chamber together with the implementation of different injection strategies e.g., injection timing, spray targeting, higher injection pressure, play a key role in the accomplishment of the aforementioned targets. As far as the match between the fuel injection and evaporation and the combustion chamber shape is concerned, the assessment of the interaction between the liquid fuel spray and the engine walls in gasoline direct injection engines is crucial. The use of numerical simulations is an acknowledged technique to support the study of new technological solutions such as the design of new gasoline blends and of tailored injection strategies to pursue the target mixture formation. The current simulation framework lacks a well-defined best practice for the liquid fuel spray interaction simulation, which is a complex multi-physics problem. This thesis deals with the development of robust methodologies to approach the numerical simulation of the liquid fuel spray interaction with walls and lubricants. The accomplishment of this task was divided into three tasks: i) setup and validation of spray-wall impingement three-dimensional CFD spray simulations; ii) development of a one-dimensional model describing the liquid fuel – lubricant oil interaction; iii) development of a machine learning based algorithm aimed to define which mixture of known pure components mimics the physical behaviour of the real gasoline for the simulation of the liquid fuel spray interaction.
Resumo:
The fast development of Information Communication Technologies (ICT) offers new opportunities to realize future smart cities. To understand, manage and forecast the city's behavior, it is necessary the analysis of different kinds of data from the most varied dataset acquisition systems. The aim of this research activity in the framework of Data Science and Complex Systems Physics is to provide stakeholders with new knowledge tools to improve the sustainability of mobility demand in future cities. Under this perspective, the governance of mobility demand generated by large tourist flows is becoming a vital issue for the quality of life in Italian cities' historical centers, which will worsen in the next future due to the continuous globalization process. Another critical theme is sustainable mobility, which aims to reduce private transportation means in the cities and improve multimodal mobility. We analyze the statistical properties of urban mobility of Venice, Rimini, and Bologna by using different datasets provided by companies and local authorities. We develop algorithms and tools for cartography extraction, trips reconstruction, multimodality classification, and mobility simulation. We show the existence of characteristic mobility paths and statistical properties depending on transport means and user's kinds. Finally, we use our results to model and simulate the overall behavior of the cars moving in the Emilia Romagna Region and the pedestrians moving in Venice with software able to replicate in silico the demand for mobility and its dynamic.
Resumo:
The time-dependent CP asymmetries of the $B^0\to\pi^+\pi^-$ and $B^0_s\toK^+K^-$ decays and the time-integrated CP asymmetries of the $B^0\toK^+\pi^-$ and $B^0_s\to\pi^+K^-$ decays are measured, using the $p-p$ collision data collected with the LHCb detector and corresponding to the full Run2. The results are compatible with previous determinations of these quantities from LHCb, except for the CP-violation parameters of the $B^0_s\to K^+K^-$ decays, that show a discrepancy exceeding 3 standard deviations between different data-taking periods. The investigations being conducted to understand the discrepancy are documented. The measurement of the CKM matrix element $|V_{cb}|$ using $B^0_{s}\to D^{(*)-}_s\mu^+ \nu_\mu$ is also reported, using the $p-p$ collision data collected with the LHCb detector and corresponding to the full Run1. The measurement leads to $|V_{cb}| = (41.4\pm0.6\pm0.9\pm1.2)\times 10^{-3}$, where the first uncertainty is statistical, the second is systematic, and the third is due to external inputs. This measurement is compatible with the world averages and constitutes the first measurement of $|V_{cb}|$ at a hadron collider and the absolute first one with decays of the $B^0_s$ meson. The analysis also provides the very first measurements of the branching ratio and form factors parameters of the signal decay modes. The study of the characteristics ruling the response of an electromagnetic calorimeter (ECAL) to profitably operate in the high luminosity regime foreseen for the Upgrade2 of LHCb is reported in the final part of this Thesis. A fast and flexible simulation framework is developed to this purpose. Physics performance of different configurations of the ECAL are evaluated using samples of fully simulated $B^0\to \pi^+\pi^-\pi^0$ and $B^0\to K^{*0}e^+e^-$ decays. The results are used to guide the development of the future ECAL and are reported in the Framework Technical Design Report of the LHCb Upgrade2 detector.
Resumo:
The object of the present study is the process of gas transport in nano-sized materials, i.e. systems having structural elements of the order of nanometers. The aim of this work is to advance the understanding of the gas transport mechanism in such materials, for which traditional models are not often suitable, by providing a correct interpretation of the relationship between diffusive phenomena and structural features. This result would allow the development new materials with permeation properties tailored on the specific application, especially in packaging systems. The methods used to achieve this goal were a detailed experimental characterization and different simulation methods. The experimental campaign regarded the determination of oxygen permeability and diffusivity in different sets of organic-inorganic hybrid coatings prepared via sol-gel technique. The polymeric samples coated with these hybrid layers experienced a remarkable enhancement of the barrier properties, which was explained by the strong interconnection at the nano-scale between the organic moiety and silica domains. An analogous characterization was performed on microfibrillated cellulose films, which presented remarkable barrier effect toward oxygen when it is dry, while in the presence of water the performance significantly drops. The very low value of water diffusivity at low activities is also an interesting characteristic which deals with its structural properties. Two different approaches of simulation were then considered: the diffusion of oxygen through polymer-layered silicates was modeled on a continuum scale with a CFD software, while the properties of n-alkanthiolate self assembled monolayers on gold were analyzed from a molecular point of view by means of a molecular dynamics algorithm. Modeling transport properties in layered nanocomposites, resulting from the ordered dispersion of impermeable flakes in a 2-D matrix, allowed the calculation of the enhancement of barrier effect in relation with platelets structural parameters leading to derive a new expression. On this basis, randomly distributed systems were simulated and the results were analyzed to evaluate the different contributions to the overall effect. The study of more realistic three-dimensional geometries revealed a prefect correspondence with the 2-D approximation. A completely different approach was applied to simulate the effect of temperature on the oxygen transport through self assembled monolayers; the structural information obtained from equilibrium MD simulations showed that raising the temperature, makes the monolayer less ordered and consequently less crystalline. This disorder produces a decrease in the barrier free energy and it lowers the overall resistance to oxygen diffusion, making the monolayer more permeable to small molecules.
Resumo:
The vertical profile of aerosol in the planetary boundary layer of the Milan urban area is studied in terms of its development and chemical composition in a high-resolution modelling framework. The period of study spans a week in summer of 2007 (12-18 July), when continuous LIDAR measurements and a limited set of balloon profiles were collected in the frame of the ASI/QUITSAT project. LIDAR observations show a diurnal development of an aerosol plume that lifts early morning surface emissions to the top of the boundary layer, reaching maximum concentration around midday. Mountain breeze from Alps clean the bottom of the aerosol layer, typically leaving a residual layer at around 1500-2000 m which may survive for several days. During the last two days under analysis, a dust layer transported from Sahara reaches the upper layers of Milan area and affects the aerosol vertical distribution in the boundary layer. Simulation from the MM5/CHIMERE modelling system, carried out at 1 km horizontal resolution, qualitatively reproduced the general features of the Milan aerosol layer observed with LIDAR, including the rise and fall of the aersol plume, the residual layer in altitude and the Saharan dust event. The simulation highlighted the importance of nitrates and secondary organics in its composition. Several sensitivity tests showed that main driving factors leading to the dominance of nitrates in the plume are temperature and gas absorption process. A modelling study turn to the analysis of the vertical aerosol profiles distribution and knowledge of the characterization of the PM at a site near the city of Milan is performed using a model system composed by a meteorological model MM5 (V3-6), the mesoscale model from PSU/NCAR and a Chemical Transport Model (CTM) CHIMERE to simulate the vertical aerosol profile. LiDAR continuous observations and balloon profiles collected during two intensive campaigns in summer 2007 and in winter 2008 in the frame of the ASI/QUITSAT project have been used to perform comparisons in order to evaluate the ability of the aerosol chemistry transport model CHIMERE to simulate the aerosols dynamics and compositions in this area. The comparisons of model aerosols with measurements are carried out over a full time period between 12 July 2007 and 18 July 2007. The comparisons demonstrate the ability of the model to reproduce correctly the aerosol vertical distributions and their temporal variability. As detected by the LiDAR, the model during the period considered, predicts a diurnal development of a plume during the morning and a clearing during the afternoon, typically the plume reaches the top of the boundary layer around mid day, in this time CHIMERE produces highest concentrations in the upper levels as detected by LiDAR. The model, moreover can reproduce LiDAR observes enhancement aerosols concentrations above the boundary layer, attributing the phenomena to dust out intrusion. Another important information from the model analysis regard the composition , it predicts that a large part of the plume is composed by nitrate, in particular during 13 and 16 July 2007 , pointing to the model tendency to overestimates the nitrous component in the particular matter vertical structure . Sensitivity study carried out in this work show that there are a combination of different factor which determine the major nitrous composition of the “plume” observed and in particular humidity temperature and the absorption phenomena are the mainly candidate to explain the principal difference in composition simulated in the period object of this study , in particular , the CHIMERE model seems to be mostly sensitive to the absorption process.
Resumo:
The topic of this thesis is the feedback stabilization of the attitude of magnetically actuated spacecraft. The use of magnetic coils is an attractive solution for the generation of control torques on small satellites flying inclined low Earth orbits, since magnetic control systems are characterized by reduced weight and cost, higher reliability, and require less power with respect to other kinds of actuators. At the same time, the possibility of smooth modulation of control torques reduces coupling of the attitude control system with flexible modes, thus preserving pointing precision with respect to the case when pulse-modulated thrusters are used. The principle based on the interaction between the Earth's magnetic field and the magnetic field generated by the set of coils introduces an inherent nonlinearity, because control torques can be delivered only in a plane that is orthogonal to the direction of the geomagnetic field vector. In other words, the system is underactuated, because the rotational degrees of freedom of the spacecraft, modeled as a rigid body, exceed the number of independent control actions. The solution of the control issue for underactuated spacecraft is also interesting in the case of actuator failure, e.g. after the loss of a reaction-wheel in a three-axes stabilized spacecraft with no redundancy. The application of well known control strategies is no longer possible in this case for both regulation and tracking, so that new methods have been suggested for tackling this particular problem. The main contribution of this thesis is to propose continuous time-varying controllers that globally stabilize the attitude of a spacecraft, when magneto-torquers alone are used and when a momentum-wheel supports magnetic control in order to overcome the inherent underactuation. A kinematic maneuver planning scheme, stability analyses, and detailed simulation results are also provided, with new theoretical developments and particular attention toward application considerations.
Resumo:
The research field of my PhD concerns mathematical modeling and numerical simulation, applied to the cardiac electrophysiology analysis at a single cell level. This is possible thanks to the development of mathematical descriptions of single cellular components, ionic channels, pumps, exchangers and subcellular compartments. Due to the difficulties of vivo experiments on human cells, most of the measurements are acquired in vitro using animal models (e.g. guinea pig, dog, rabbit). Moreover, to study the cardiac action potential and all its features, it is necessary to acquire more specific knowledge about single ionic currents that contribute to the cardiac activity. Electrophysiological models of the heart have become very accurate in recent years giving rise to extremely complicated systems of differential equations. Although describing the behavior of cardiac cells quite well, the models are computationally demanding for numerical simulations and are very difficult to analyze from a mathematical (dynamical-systems) viewpoint. Simplified mathematical models that capture the underlying dynamics to a certain extent are therefore frequently used. The results presented in this thesis have confirmed that a close integration of computational modeling and experimental recordings in real myocytes, as performed by dynamic clamp, is a useful tool in enhancing our understanding of various components of normal cardiac electrophysiology, but also arrhythmogenic mechanisms in a pathological condition, especially when fully integrated with experimental data.
Resumo:
Pure hydrogen production from methane is a multi-step process run on a large scale for economic reasons. However, hydrogen can be produced in a one-pot continuous process for small scale applications, namely Low Temperature Steam Reforming. Here, Steam Reforming is carried out in a reactor whose walls are composed by a membrane selective toward hydrogen. Pd is the most used membrane material due to its high permeability and selectivity. However, Pd deteriorates at temperatures higher than 500°C, thus the operative temperature of the reaction has to be lowered. However, the employment of a membrane reactor may allow to give high yields thanks to hydrogen removal, which shifts the reaction toward the products. Moreover, pure hydrogen is produced. This work is concentrated on the synthesis of a catalytic system and the investigation of its performances in different processes, namely oxy-reforming, steam reforming and water gas shift, to find appropriate conditions for hydrogen production in a catalytic membrane reactor. The catalyst supports were CeZr and Zr oxides synthesized by microemulsion, impregnated with different noble metals. Pt, Rh and PtRh based catalysts were tested in the oxy reforming process at 500°C, where Rh on CeZr gave the most interesting results. On the opposite, the best performances in low temperature steam reforming were obtained with Rh impregnated on Zr oxide. This catalyst was selected to perform low temperature steam reforming in a Pd membrane reactor. The hydrogen removal given by the membrane allowed to increase the methane conversion over the equilibrium of a classical fixed bed reactor thanks to an equilibrium shift effect. High hydrogen production and recoveries were also obtained, and no other compound permeated through the membrane which proved to be hydrogen selective.
Resumo:
A possible future scenario for the water injection (WI) application has been explored as an advanced strategy for modern GDI engines. The aim is to verify whether the PWI (Port Water Injection) and DWI (Direct Water Injection) architectures can replace current fuel enrichment strategies to limit turbine inlet temperatures (TiT) and knock engine attitude. In this way, it might be possible to extend the stoichiometric mixture condition over the entire engine map, meeting possible future restrictions in the use of AES (Auxiliary Emission Strategies) and future emission limitations. The research was first addressed through a comprehensive assessment of the state-of-the-art of the technology and the main effects of the chemical-physical water properties. Then, detailed chemical kinetics simulations were performed in order to compute the effects of WI on combustion development and auto-ignition. The latter represents an important methodology step for accurate numerical combustion simulations. The water injection was then analysed in detail for a PWI system, through an experimental campaign for macroscopic and microscopic injector characterization inside a test chamber. The collected data were used to perform a numerical validation of the spray models, obtaining an excellent matching in terms of particle size and droplet velocity distributions. Finally, a wide range of three-dimensional CFD simulations of a virtual high-bmep engine were realized and compared, exploring also different engine designs and water/fuel injection strategies under non-reacting and reacting flow conditions. According to the latter, it was found that thanks to the introduction of water, for both PWI and DWI systems, it could be possible to obtain an increase of the target performance and an optimization of the bsfc (Break Specific Fuel Consumption), lowering the engine knock risk at the same time, while the TiT target has been achieved hardly only for one DWI configuration.