6 resultados para Continuous 1-Cocycle

em AMS Tesi di Dottorato - Alm@DL - Università di Bologna


Relevância:

30.00% 30.00%

Publicador:

Resumo:

In this thesis the application of biotechnological processes based on microbial metabolic degradation of halogenated compound has been investigated. Several studies showed that most of these pollutants can be biodegraded by single bacterial strains or mixed microbial population via aerobic direct metabolism or cometabolism using as a growth substrates aromatic or aliphatic hydrocarbons. The enhancement of two specific processes has been here object of study in relation with its own respective scenario described as follow: 1st) the bioremediation via aerobic cometabolism of soil contaminated by a high chlorinated compound using a mixed microbial population and the selection and isolation of consortium specific for the compound. 2nd) the implementation of a treatment technology based on direct metabolism of two pure strains at the exact point source of emission, preventing dilution and contamination of large volumes of waste fluids polluted by several halogenated compound minimizing the environmental impact. In order to verify the effect of these two new biotechnological application to remove halogenated compound and purpose them as a more efficient alternative continuous and batch tests have been set up in the experimental part of this thesis. Results obtained from the continuous tests in the second scenario have been supported by microbial analysis via Fluorescence in situ Hybridisation (FISH) and by a mathematical model of the system. The results showed that both process in its own respective scenario offer an effective solutions for the biological treatment of chlorinate compound pollution.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

During this work has been developed an innovative methodology for continuous and in situ gas monitoring (24/24 h) of fumarolic and soil diffusive emissions applied to the geothermal and volcanic area of Pisciarelli near Agnano inside the Campi Flegrei caldera (CFc). In literature there are only scattered and in discrete data of the geochemical gas composition of fumarole at Campi Flegrei; it is only since the early ’80 that exist a systematic record of fumaroles with discrete sampling at Solfatara (Bocca Grande and Bocca Nuova fumaroles) and since 1999, even at the degassing areas of Pisciarelli. This type of sampling has resulted in a time series of geochemical analysis with discontinuous periods of time set (in average 2-3 measurements per month) completely inadequate for the purposes of Civil Defence in such high volcanic risk and densely populated areas. For this purpose, and to remedy this lack of data, during this study was introduced a new methodology of continuous and in situ sampling able to continuously detect data related and from its soil diffusive degassing. Due to its high sampling density (about one measurement per minute therefore producing 1440 data daily) and numerous species detected (CO2, Ar, 36Ar, CH4, He, H2S, N2, O2) allowing a good statistic record and the reconstruction of the gas composition evolution of the investigated area. This methodology is based on continuous sampling of fumaroles gases and soil degassing using an extraction line, which after undergoing a series of condensation processes of the water vapour content - better described hereinafter - is analyzed through using a quadrupole mass spectrometer

Relevância:

30.00% 30.00%

Publicador:

Resumo:

La chirurgia con ultrasuoni focalizzati guidati da MRI (MR-g-FUS) è un trattamento di minima invasività, guidato dal più sofisticato strumento di imaging a disposizione, che utilizza a scopo diagnostico e terapeutico forme di energia non ionizzante. Le sue caratteristiche portano a pensare un suo possibile e promettente utilizzo in numerose aree della patologia umana, in particolare scheletrica. L'osteoma osteoide affligge frequentemente pazienti di giovane età, è una patologia benigna, con origine ed evoluzione non chiare, e trova nella termoablazione con radiofrequenza continua sotto guida CT (CT-g-RFA) il suo trattamento di elezione. Questo lavoro ha valutato l’efficacia, gli effetti e la sicurezza del trattamento dell’osteoma osteoide con MR-g-FUS. Sono stati presi in considerazione pazienti arruolati per MR-g-FUS e, come gruppo di controllo, pazienti sottoposti a CT-g-RFA, che hanno raggiunto un follow-up minimo di 18 mesi (rispettivamente 6 e 24 pazienti). Due pazienti erano stati esclusi dal trattamento MR-g-FUS per claustrofobia (2/8). Tutti i trattamenti sono stati portati a termine con successo tecnico e clinico. Non sono state registrate complicanze o eventi avversi correlati all’anestesia o alle procedure di trattamento, e tutti i pazienti sono stati dimessi regolarmente dopo 12-24 ore. La durata media dei trattamenti di MR-g-FUS è stata di 40±21 min. Da valori di score VAS pre-trattamento oscillanti tra 6 e 10 (su scala 0-10), i trattamenti hanno condotto tutti i pazienti a VAS 0 (senza integrazioni farmacologiche). Nessun paziente ha manifestato segni di persistenza di malattia o di recidiva al follow-up. Nonostante la neurolisi e la risoluzione dei sintomi, la perfusione del nidus è stata ritrovata ancora presente in oltre il 70% dei casi sottoposti a MR-g-FUS (4/6 pazienti). I risultati derivati da un'analisi estesa a pazienti più recentemente arruolati confermano questi dati. Il trattamento con MR-g-FUS sembra essere efficace e sicuro nel risolvere la sintomatologia dell'osteoma osteoide.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

More efficient water treatment technologies would decrease the water bodies’ pollution and the actual intake of water resource. The aim of this thesis is an in-depth analysis of the magnetic separation of pollutants from water by means of a continuous-flow magnetic filter subjected to a field gradient produced by permanent magnets. This technique has the potential to improve times and efficiencies of both urban wastewater treatment plants and drinking water treatment plants. It might also substitute industrial wastewater treatments. This technique combines a physico-chemical phase of adsorption and a magnetic phase of filtration, having the potential to bond magnetite with any conventional adsorbent powder. The removal of both Magnetic Activated Carbons (MACs) and zeolite-magnetite mix with the addition of a coagulant was investigated. Adsorption tests of different pollutants (surfactants, endocrine disruptors, Fe(III), Mn(II), Ca(II)) on these adsorbents were also performed achieving good results. The numerical results concerning the adsorbent removals well reproduced the experimental ones obtained from two different experimental setups. In real situations the treatable flow rates are up to 90 m3/h (2000 m3/d).

Relevância:

30.00% 30.00%

Publicador:

Resumo:

The purpose of the first part of the research activity was to develop an aerobic cometabolic process in packed bed reactors (PBR) to treat real groundwater contaminated by trichloroethylene (TCE) and 1,1,2,2-tetrachloroethane (TeCA). In an initial screening conducted in batch bioreactors, different groundwater samples from 5 wells of the contaminated site were fed with 5 growth substrates. The work led to the selection of butane as the best growth substrate, and to the development and characterization from the site’s indigenous biomass of a suspended-cell consortium capable to degrade TCE with a 90 % mineralization of the organic chlorine. A kinetic study conducted in batch and continuous flow PBRs and led to the identification of the best carrier. A kinetic study of butane and TCE biodegradation indicated that the attached-cell consortium is characterized by a lower TCE specific degredation rates and by a lower level of mutual butane-TCE inhibition. A 31 L bioreactor was designed and set up for upscaling the experiment. The second part of the research focused on the biodegradation of 4 polymers, with and with-out chemical pre-treatments: linear low density polyethylene (LLDPE), polyethylene (PP), polystyrene (PS) and polyvinyl chloride (PVC). Initially, the 4 polymers were subjected to different chemical pre-treatments: ozonation and UV/ozonation, in gaseous and aqueous phase. It was found that, for LLDPE and PP, the coupling UV and ozone in gas phase is the most effective way to oxidize the polymers and to generate carbonyl groups on the polymer surface. In further tests, the effect of chemical pretreatment on polyner biodegrability was studied. Gas-phase ozonated and virgin polymers were incubated aerobically with: (a) a pure strain, (b) a mixed culture of bacteria; and (c) a fungal culture, together with saccharose as a co-substrate.