3 resultados para Consumer Health Information

em AMS Tesi di Dottorato - Alm@DL - Università di Bologna


Relevância:

80.00% 80.00%

Publicador:

Resumo:

In the era of the Internet of Everything, a user with a handheld or wearable device equipped with sensing capability has become a producer as well as a consumer of information and services. The more powerful these devices get, the more likely it is that they will generate and share content locally, leading to the presence of distributed information sources and the diminishing role of centralized servers. As of current practice, we rely on infrastructure acting as an intermediary, providing access to the data. However, infrastructure-based connectivity might not always be available or the best alternative. Moreover, it is often the case where the data and the processes acting upon them are of local scopus. Answers to a query about a nearby object, an information source, a process, an experience, an ability, etc. could be answered locally without reliance on infrastructure-based platforms. The data might have temporal validity limited to or bounded to a geographical area and/or the social context where the user is immersed in. In this envisioned scenario users could interact locally without the need for a central authority, hence, the claim of an infrastructure-less, provider-less platform. The data is owned by the users and consulted locally as opposed to the current approach of making them available globally and stay on forever. From a technical viewpoint, this network resembles a Delay/Disruption Tolerant Network where consumers and producers might be spatially and temporally decoupled exchanging information with each other in an adhoc fashion. To this end, we propose some novel data gathering and dissemination strategies for use in urban-wide environments which do not rely on strict infrastructure mediation. While preserving the general aspects of our study and without loss of generality, we focus our attention toward practical applicative scenarios which help us capture the characteristics of opportunistic communication networks.

Relevância:

80.00% 80.00%

Publicador:

Resumo:

The great challenges of today pose great pressure on the food chain to provide safe and nutritious food that meets regulations and consumer health standards. In this context, Risk Analysis is used to produce an estimate of the risks to human health and to identify and implement effective risk-control measures. The aims of this work were 1) describe how QRA is used to evaluate the risk for consumers health, 2) address the methodology to obtain models to apply in QMRA; 3) evaluate solutions to mitigate the risk. The application of a QCRA to the Italian milk industry enabled the assessment of Aflatoxin M1 exposure, impact on different population categories, and comparison of risk-mitigation strategies. The results highlighted the most sensitive population categories, and how more stringent sampling plans reduced risk. The application of a QMRA to Spanish fresh cheeses evidenced how the contamination of this product with Listeria monocytogenes may generate a risk for the consumers. Two risk-mitigation actions were evaluated, i.e. reducing shelf life and domestic refrigerator temperature, both resulting effective in reducing the risk of listeriosis. A description of the most applied protocols for data generation for predictive model development, was provided to increase transparency and reproducibility and to provide the means to better QMRA. The development of a linear regression model describing the fate of Salmonella spp. in Italian salami during the production process and HPP was described. Alkaline electrolyzed water was evaluated for its potential use to reduce microbial loads on working surfaces, with results showing its effectiveness. This work showed the relevance of QRA, of predictive microbiology, and of new technologies to ensure food safety on a more integrated way. Filling of data gaps, the development of better models and the inclusion of new risk-mitigation strategies may lead to improvements in the presented QRAs.

Relevância:

80.00% 80.00%

Publicador:

Resumo:

Pain is a highly complex phenomenon involving intricate neural systems, whose interactions with other physiological mechanisms are not fully understood. Standard pain assessment methods, relying on verbal communication, often fail to provide reliable and accurate information, which poses a critical challenge in the clinical context. In the era of ubiquitous and inexpensive physiological monitoring, coupled with the advancement of artificial intelligence, these new tools appear as the natural candidates to be tested to address such a challenge. This thesis aims to conduct experimental research to develop digital biomarkers for pain assessment. After providing an overview of the state-of-the-art regarding pain neurophysiology and assessment tools, methods for appropriately conditioning physiological signals and controlling confounding factors are presented. The thesis focuses on three different pain conditions: cancer pain, chronic low back pain, and pain experienced by patients undergoing neurorehabilitation. The approach presented in this thesis has shown promise, but further studies are needed to confirm and strengthen these results. Prior to developing any models, a preliminary signal quality check is essential, along with the inclusion of personal and health information in the models to limit their confounding effects. A multimodal approach is preferred for better performance, although unimodal analysis has revealed interesting aspects of the pain experience. This approach can enrich the routine clinical pain assessment procedure by enabling pain to be monitored when and where it is actually experienced, and without the involvement of explicit communication,. This would improve the characterization of the pain experience, aid in antalgic therapy personalization, and bring timely relief, with the ultimate goal of improving the quality of life of patients suffering from pain.