2 resultados para Constrained network mapping
em AMS Tesi di Dottorato - Alm@DL - Università di Bologna
Resumo:
This doctoral thesis focuses on the study of historical shallow landslide activity over time in response to anthropogenic forcing on land use, through the compilation of multi-temporal landslide inventories. The study areas, located in contrasting settings and characterized by different history of land-cover changes, include the Sillaro River basin (Italy) and the Tsitika and Eve River basins (coastal British Columbia). The Sillaro River basin belongs to clay-dominated settings, characterized by extensive badland development, and dominated by earth slides and earthflows. Here, forest removal began in the Roman period and has been followed by agricultural land abandonment and natural revegetation in recent time. By contrast, the Tsitika-Eve River basins are characterized by granitic and basaltic lithologies, and dominated by debris slides, debris flows and debris avalanches. In this setting, anthropogenic impacts started in 1960’s and have involved logging operation. The thesis begins with an introductory chapter, followed by a methodological section, where a multi-temporal mapping approach is proposed and tested at four landslide sites of the Sillaro River basin. Results, in terms of inventory completeness in time and space, are compared against the existing region-wide Emilia-Romagna inventory. This approach is then applied at the Sillaro River basin scale, where the multi-temporal inventory obtained is used to investigate the landslide activity in relation to historical land cover changes across geologic domains and in relation to hydro-meteorological forcing. Then, the impact of timber harvesting and road construction on landslide activity and sediment transfer in the Tsitika-Eve River basins is investigated, with a focus on the controls that interactions between landscape morphometry and cutblock location may have on landslide size-frequency relations. The thesis ends with a summary of the main findings and discusses advantages and limitations associated with the compilation of multi-temporal inventories in the two settings during different periods of human-driven, land-cover dynamics.
Resumo:
The ventral premotor cortex (PMv) is believed to play a pivotal role in a multitude of visuomotor behaviors, such as sensory-guided goal-directed visuomotor transformations, arbitrary visuomotor mapping, and hyper-learnt visuomotor associations underlying automatic imitative tendencies. All these functions are likely carried out through the copious projections connecting PMv to the primary motor cortex (M1). Yet, causal evidence investigating the functional relevance of the PMv-M1 network remains elusive and scarce. In the studies reported in this thesis we addressed this issue using a transcranial magnetic stimulation (TMS) protocol called cortico-cortical paired associative stimulation (ccPAS), which relies on multisite stimulation to induce Hebbian spike-timing dependent plasticity (STDP) by repeatedly stimulating the pathway connecting two target areas to manipulate their connectivity. Firstly, we show that ccPAS protocols informed by both short- and long-latency PMv-M1 interactions effectively modulate connectivity between the two nodes. Then, by pre-activating the network to apply ccPAS in a state-dependent manner, we were able to selectively target specific functional visuo-motor pathways, demonstrating the relevance of PMv-M1 connectivity to arbitrary visuomotor mapping. Subsequently, we addressed the PMv-to-M1 role in automatic imitation, and demonstrated that its connectivity manipulation has a corresponding impact on automatic imitative tendencies. Finally, by combining dual-coil TMS connectivity assessments and ccPAS in young and elderly individuals, we traced effective connectivity of premotor-motor networks and tested their plasticity and relevance to manual dexterity and force in healthy ageing. Our findings provide unprecedent causal evidence of the functional role of the PMv-to-M1 network in young and elderly individuals. The studies presented in this thesis suggest that ccPAS can effectively modulate the strength of connectivity between targeted areas, and coherently manipulate a networks’ behavioral output. Results open new research prospects into the causal role of cortico-cortical connectivity, and provide necessary information to the development of clinical interventions based on connectivity manipulation.