6 resultados para Constant pressure test

em AMS Tesi di Dottorato - Alm@DL - Università di Bologna


Relevância:

30.00% 30.00%

Publicador:

Resumo:

In the last years of research, I focused my studies on different physiological problems. Together with my supervisors, I developed/improved different mathematical models in order to create valid tools useful for a better understanding of important clinical issues. The aim of all this work is to develop tools for learning and understanding cardiac and cerebrovascular physiology as well as pathology, generating research questions and developing clinical decision support systems useful for intensive care unit patients. I. ICP-model Designed for Medical Education We developed a comprehensive cerebral blood flow and intracranial pressure model to simulate and study the complex interactions in cerebrovascular dynamics caused by multiple simultaneous alterations, including normal and abnormal functional states of auto-regulation of the brain. Individual published equations (derived from prior animal and human studies) were implemented into a comprehensive simulation program. Included in the normal physiological modelling was: intracranial pressure, cerebral blood flow, blood pressure, and carbon dioxide (CO2) partial pressure. We also added external and pathological perturbations, such as head up position and intracranial haemorrhage. The model performed clinically realistically given inputs of published traumatized patients, and cases encountered by clinicians. The pulsatile nature of the output graphics was easy for clinicians to interpret. The manoeuvres simulated include changes of basic physiological inputs (e.g. blood pressure, central venous pressure, CO2 tension, head up position, and respiratory effects on vascular pressures) as well as pathological inputs (e.g. acute intracranial bleeding, and obstruction of cerebrospinal outflow). Based on the results, we believe the model would be useful to teach complex relationships of brain haemodynamics and study clinical research questions such as the optimal head-up position, the effects of intracranial haemorrhage on cerebral haemodynamics, as well as the best CO2 concentration to reach the optimal compromise between intracranial pressure and perfusion. We believe this model would be useful for both beginners and advanced learners. It could be used by practicing clinicians to model individual patients (entering the effects of needed clinical manipulations, and then running the model to test for optimal combinations of therapeutic manoeuvres). II. A Heterogeneous Cerebrovascular Mathematical Model Cerebrovascular pathologies are extremely complex, due to the multitude of factors acting simultaneously on cerebral haemodynamics. In this work, the mathematical model of cerebral haemodynamics and intracranial pressure dynamics, described in the point I, is extended to account for heterogeneity in cerebral blood flow. The model includes the Circle of Willis, six regional districts independently regulated by autoregulation and CO2 reactivity, distal cortical anastomoses, venous circulation, the cerebrospinal fluid circulation, and the intracranial pressure-volume relationship. Results agree with data in the literature and highlight the existence of a monotonic relationship between transient hyperemic response and the autoregulation gain. During unilateral internal carotid artery stenosis, local blood flow regulation is progressively lost in the ipsilateral territory with the presence of a steal phenomenon, while the anterior communicating artery plays the major role to redistribute the available blood flow. Conversely, distal collateral circulation plays a major role during unilateral occlusion of the middle cerebral artery. In conclusion, the model is able to reproduce several different pathological conditions characterized by heterogeneity in cerebrovascular haemodynamics and can not only explain generalized results in terms of physiological mechanisms involved, but also, by individualizing parameters, may represent a valuable tool to help with difficult clinical decisions. III. Effect of Cushing Response on Systemic Arterial Pressure. During cerebral hypoxic conditions, the sympathetic system causes an increase in arterial pressure (Cushing response), creating a link between the cerebral and the systemic circulation. This work investigates the complex relationships among cerebrovascular dynamics, intracranial pressure, Cushing response, and short-term systemic regulation, during plateau waves, by means of an original mathematical model. The model incorporates the pulsating heart, the pulmonary circulation and the systemic circulation, with an accurate description of the cerebral circulation and the intracranial pressure dynamics (same model as in the first paragraph). Various regulatory mechanisms are included: cerebral autoregulation, local blood flow control by oxygen (O2) and/or CO2 changes, sympathetic and vagal regulation of cardiovascular parameters by several reflex mechanisms (chemoreceptors, lung-stretch receptors, baroreceptors). The Cushing response has been described assuming a dramatic increase in sympathetic activity to vessels during a fall in brain O2 delivery. With this assumption, the model is able to simulate the cardiovascular effects experimentally observed when intracranial pressure is artificially elevated and maintained at constant level (arterial pressure increase and bradicardia). According to the model, these effects arise from the interaction between the Cushing response and the baroreflex response (secondary to arterial pressure increase). Then, patients with severe head injury have been simulated by reducing intracranial compliance and cerebrospinal fluid reabsorption. With these changes, oscillations with plateau waves developed. In these conditions, model results indicate that the Cushing response may have both positive effects, reducing the duration of the plateau phase via an increase in cerebral perfusion pressure, and negative effects, increasing the intracranial pressure plateau level, with a risk of greater compression of the cerebral vessels. This model may be of value to assist clinicians in finding the balance between clinical benefits of the Cushing response and its shortcomings. IV. Comprehensive Cardiopulmonary Simulation Model for the Analysis of Hypercapnic Respiratory Failure We developed a new comprehensive cardiopulmonary model that takes into account the mutual interactions between the cardiovascular and the respiratory systems along with their short-term regulatory mechanisms. The model includes the heart, systemic and pulmonary circulations, lung mechanics, gas exchange and transport equations, and cardio-ventilatory control. Results show good agreement with published patient data in case of normoxic and hyperoxic hypercapnia simulations. In particular, simulations predict a moderate increase in mean systemic arterial pressure and heart rate, with almost no change in cardiac output, paralleled by a relevant increase in minute ventilation, tidal volume and respiratory rate. The model can represent a valid tool for clinical practice and medical research, providing an alternative way to experience-based clinical decisions. In conclusion, models are not only capable of summarizing current knowledge, but also identifying missing knowledge. In the former case they can serve as training aids for teaching the operation of complex systems, especially if the model can be used to demonstrate the outcome of experiments. In the latter case they generate experiments to be performed to gather the missing data.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Objectives. Blood pressure (BP) physiologically has higher and lower values during the active and rest period, respectively. Subjects failing to show the appropriate BP decrease (10-20%) on passing form diurnal activity to nocturnal rest and sleep have increased risk of target organ damage at the cardiac, vascular and cerebrovascular levels. Hypocretin (HCRT) releasing neurons, mainly located in the lateral hypothalamus, project widely to the central nervous system. Thus HCRT neurons are involved in several autonomic functions, including BP regulation. HCRT neurons also play a key role in wake-sleep cycle regulation, the lack of which becomes evident in HCRT-deficient narcoleptic patients. I investigated whether chronic lack of HCRT signaling alters BP during sleep in mouse models of narcolepsy. Methods. The main study was performed on HCRT-ataxin3 transgenic mice (TG) with selective post-natal ablation of HCRT neurons, HCRT gene knockout mice (KO) with preserved HCRT neurons, and Wild-Type control mice (WT) with identical genetic background. Experiments where replicated on TG and WT mice with hybrid genetic background (hTG and hWT, respectively). Mice were implanted with a telemetric pressure transducer (TA11PA-C10, DSI) and electrodes for discriminating wakefulness (W), rapid-eye-movement sleep (REMS) and non-REMS (NREMS). Signals were recorded for 3 days. Mean BP values were computed in each wake-sleep state and analyzed by ANOVA and t-test with significance at p<0.05. Results. The decrease in BP between either NREMS or REMS and W was significantly blunted in TG and KO with respect to WT as well as in hTG with respect to hWT. Conclusions. Independently from the genetic background, chronic HCRT deficiency leads to a decreased BP difference between W and sleep potentially adverse in narcoleptic subjects. These data suggest that HCRT play an important role in the sleep-dependent cardiovascular control.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

PURPOSE. Portal pressure is measured invasively as Hepatic Venous Pressure Gradient (HVPG) in the angiography room. Liver stiffness measured by Fibroscan was shown to correlate with HVPG values below 12 mmHg. This is not surprising, since in cirrhosis the increase of portal pressure is not directly linked with liver fibrosis and consequently to liver stiffness. We hypothesized that, given the spleen’s privileged location upstream to the whole portal system, splenic stiffness could provide relevant information about portal pressure. Aim of the study was to assess the relationship between liver and spleen stiffness measured by Virtual Touch™ (ARFI) and HVPG in cirrhotic patients. METHODS. 40 consecutive patients (30 males, mean age 62y, mean BMI=26, mean Child-Pugh A6, mean platelet count=92.000/mmc, 19 HCV+, 7 with ascites) underwent to ARFI stiffness measurement (10 valid measurements in right liver lobe both surface and centre, left lobe and 20 in the spleen) and HPVG, blindly to each other. Median ARFI values of 10 samplings on every liver area and of 20 samplings on spleen were calculated. RESULTS. Stiffness could be easily measured in all patients with ARFI, resulting a mean of 2,61±0,76, 2,5±0,62 and 2,55±0,66 m/sec in the liver areas and 3.3±0,5 m/s in the spleen. Median HPVG was 14 mmHg (range 5-27); 28 patients showed values ≥10 mmHg. A positive significant correlation was found between spleen stiffness and HPVG values (r=0.744, p<0.001). No significant correlation was found between all liver stiffness and HVPG (p>0,05). AUROC was calculated to test spleen stiffness ability in discriminating patients with HVPG ≥10. AUROC = 0.911 was obtained, with sensitivity of 69% and specificity of 91% at a cut-off of 3.26 m/s. CONCLUSION. Spleen stiffness measurement with ARFI correlates with HVPG in patients with cirrhosis, with a potential of identifying patients with clinically significant portal hypertension.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Background Decreased exercise capacity, and reduction in peak oxygen uptake are present in most patients affected by hypertrophic cardiomyopathy (HCM) . In addition an abnormal blood pressure response during a maximal exercise test was seen to be associated with high risk for sudden cardiac death in adult patients affected by HCM. Therefore exercise test (CPET) has become an important part of the evaluation of the HCM patients, but data on its role in patients with HCM in the pediatric age are quite limited. Methods and results Between 2004 and 2010, using CPET and echocardiography, we studied 68 children (mean age 13.9 ± 2 years) with HCM. The exercise test was completed by all the patients without adverse complications. The mean value of achieved VO2 max was 31.4 ± 8.3 mL/Kg/min which corresponded to 77.5 ± 16.9 % of predicted range. 51 patients (75%) reached a subnormal value of VO2max. On univariate analysis the achieved VO2 as percentage of predicted and the peak exercise systolic blood pressure (BP) Z score were inversely associated with max left ventricle (LV) wall thickness, with E/Ea ratio, and directly related with Ea and Sa wave velocities No association was found with the LV outflow tract gradient. During a mean follow up of 2.16 ± 1.7 years 9 patients reached the defined clinical end point of death, transplantation, implanted cardioverter defibrillator (ICD) shock, ICD implantation for secondary prevention or myectomy. Patients with peak VO2 < 52% or with peak systolic BP Z score < -5.8 had lower event free survival at follow up. Conclusions Exercise capacity is decreased in patients with HCM in pediatric age and global ventricular function seems being the most important determinant of exercise capacity in these patients. CPET seems to play an important role in prognostic stratification of children affected by HCM.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Il primo studio ha verificato l'affidabilità del software Polimedicus e gli effetti indotti d'allenamento arobico all’intensità del FatMax. 16 soggetti sovrappeso, di circa 40-55anni, sono stati arruolati e sottoposti a un test incrementale fino a raggiungere un RER di 0,95, e da quel momento il carico è stato aumentato di 1 km/ h ogni minuto fino a esaurimento. Successivamente, è stato verificato se i valori estrapolati dal programma erano quelli che si possono verificare durante a un test a carico costante di 1ora. I soggetti dopo 8 settimane di allenamento hanno fatto un altro test incrementale. Il dati hanno mostrato che Polimedicus non è molto affidabile, soprattutto l'HR. Nel secondo studio è stato sviluppato un nuovo programma, Inca, ed i risultati sono stati confrontati con i dati ottenuti dal primo studio con Polimedicus. I risultati finali hanno mostrato che Inca è più affidabile. Nel terzo studio, abbiamo voluto verificare l'esattezza del calcolo del FatMax con Inca e il test FATmaxwork. 25 soggetti in sovrappeso, tra 40-55 anni, sono stati arruolati e sottoposti al FATmaxwork test. Successivamente, è stato verificato se i valori estrapolati da INCA erano quelli che possono verificarsi durante un carico di prova costante di un'ora. L'analisi ha mostrato una precisione del calcolo della FatMax durante il carico di lavoro. Conclusione: E’ emersa una certa difficoltà nel determinare questo parametro, sia per la variabilità inter-individuale che intra-individuale. In futuro bisognerà migliorare INCA per ottenere protocolli di allenamento ancora più validi.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

L'intervento di connessione cavo-polmonare totale (TCPC) nei pazienti portatori di cuore univentricolare, a causa della particolare condizione emodinamica, determina un risentimento a carico di numerosi parenchimi. Scopo della ricerca è di valutare l'entità di questo danno ad un follow-up medio-lungo. Sono stati arruolati 115 pazienti, sottoposti ad intervento presso i centri di Cardiochirurgia Pediatrica di Bologna (52 pz) e Torino (63 pz). Il follow-up medio è stato di 125±2 mesi. I pazienti sono stati sottoposti ad indagine emodinamica (88 pz), test cardiopolmonare (75 pz) e Fibroscan ed ecografia epatica (47 pz). La pressione polmonare media è stata di 11.5±2.6mmHg, ed in 12 pazienti i valori di pressione polmonare erano superiori a 15mmHg. La pressione atriale media era di 6.7±2.3mmHg ed il calcolo delle resistenze vascolari polmonari indicizzate (RVP) era in media di 2±0.99 UW/m2. In 29 pazienti le RVP erano superiori a 2 UW/m2. La VO2 max in media era pari a 28±31 ml/Kg/min, 58±15 % del valore teorico. La frequenza cardiaca massima all'apice dello sforzo era di 151±22 bpm, pari al 74±17% del valore teorico. Il Fibroscan ha fornito un valore medio di 17.01 kPa (8-34.3kPa). Cinque pazienti erano in classe F2, 9 pazienti in classe F3 e 33 pazienti risultavano in classe F4. Nei pazienti con follow-up maggiore di 10 anni il valore di stiffness epatica (19.6±5.2kPa) è risultato significativamente maggiore a quello dei pazienti con follow-up minore di 10 anni (15.1±5.8kPa, p<0.01). La frequenza cardiaca massima raggiunta durante lo sforzo del test cardiopolmonare è risultata significativamente correlata alla morfologia del ventricolo unico, risultando del 67.8±14.4% del valore teorico nei pazienti portatori di ventricolo destro contro il 79.6±8.7% dei portatori di ventricolo sinistro (p=0.006). L'intervento di TCPC determina un risentimento a carico di numerosi parenchimi proporzionale alla lunghezza del follow-up, e necessita pertanto un costante monitoraggio clinico-strumentale multidisciplinare.