5 resultados para Conjugate gradient methods
em AMS Tesi di Dottorato - Alm@DL - Università di Bologna
Resumo:
This Ph.D thesis focuses on iterative regularization methods for regularizing linear and nonlinear ill-posed problems. Regarding linear problems, three new stopping rules for the Conjugate Gradient method applied to the normal equations are proposed and tested in many numerical simulations, including some tomographic images reconstruction problems. Regarding nonlinear problems, convergence and convergence rate results are provided for a Newton-type method with a modified version of Landweber iteration as an inner iteration in a Banach space setting.
Resumo:
We present a non linear technique to invert strong motion records with the aim of obtaining the final slip and rupture velocity distributions on the fault plane. In this thesis, the ground motion simulation is obtained evaluating the representation integral in the frequency. The Green’s tractions are computed using the discrete wave-number integration technique that provides the full wave-field in a 1D layered propagation medium. The representation integral is computed through a finite elements technique, based on a Delaunay’s triangulation on the fault plane. The rupture velocity is defined on a coarser regular grid and rupture times are computed by integration of the eikonal equation. For the inversion, the slip distribution is parameterized by 2D overlapping Gaussian functions, which can easily relate the spectrum of the possible solutions with the minimum resolvable wavelength, related to source-station distribution and data processing. The inverse problem is solved by a two-step procedure aimed at separating the computation of the rupture velocity from the evaluation of the slip distribution, the latter being a linear problem, when the rupture velocity is fixed. The non-linear step is solved by optimization of an L2 misfit function between synthetic and real seismograms, and solution is searched by the use of the Neighbourhood Algorithm. The conjugate gradient method is used to solve the linear step instead. The developed methodology has been applied to the M7.2, Iwate Nairiku Miyagi, Japan, earthquake. The estimated magnitude seismic moment is 2.6326 dyne∙cm that corresponds to a moment magnitude MW 6.9 while the mean the rupture velocity is 2.0 km/s. A large slip patch extends from the hypocenter to the southern shallow part of the fault plane. A second relatively large slip patch is found in the northern shallow part. Finally, we gave a quantitative estimation of errors associates with the parameters.
Resumo:
In the following chapters new methods in organocatalysis are described. The design of new catalysts is explored starting from the synthesis and the study of ion tagged prolines to their applications and recycle, then moving to the synthesis of new bicyclic diarylprolinol silyl ethers and their use in organocatalytic transformations. The study of new organocatalytic reaction is also investigated, in particular bifunctional thioureas are employed to catalyse the conjugate addition of nitro compounds to 3-yilidene oxindoles in sequential and domino reactions. Finally, preliminary results on photochemical organocatalytic atom transfer radical addition to alkenes are discussed in the last chapter.
Resumo:
Besides increasing the share of electric and hybrid vehicles, in order to comply with more stringent environmental protection limitations, in the mid-term the auto industry must improve the efficiency of the internal combustion engine and the well to wheel efficiency of the employed fuel. To achieve this target, a deeper knowledge of the phenomena that influence the mixture formation and the chemical reactions involving new synthetic fuel components is mandatory, but complex and time intensive to perform purely by experimentation. Therefore, numerical simulations play an important role in this development process, but their use can be effective only if they can be considered accurate enough to capture these variations. The most relevant models necessary for the simulation of the reacting mixture formation and successive chemical reactions have been investigated in the present work, with a critical approach, in order to provide instruments to define the most suitable approaches also in the industrial context, which is limited by time constraints and budget evaluations. To overcome these limitations, new methodologies have been developed to conjugate detailed and simplified modelling techniques for the phenomena involving chemical reactions and mixture formation in non-traditional conditions (e.g. water injection, biofuels etc.). Thanks to the large use of machine learning and deep learning algorithms, several applications have been revised or implemented, with the target of reducing the computing time of some traditional tasks by orders of magnitude. Finally, a complete workflow leveraging these new models has been defined and used for evaluating the effects of different surrogate formulations of the same experimental fuel on a proof-of-concept GDI engine model.
Resumo:
Background: The treatment of B-cell acute lymphoblastic leukemia (B-ALL) has been enriched by novel agents targeting surface markers CD19 and CD22. Inotuzumab ozogamicin (INO) is a CD22-calicheamicin conjugated monoclonal antibody approved in the setting of relapse/refractory (R/R) B-ALL able to induce a high rate of deep responses, not durable over time. Aims: This study aims to identify predictive biomarkers to INO treatment in B- ALL by flow cytometric analysis of CD22 expression and gene expression profile. Materials and methods: Firstly, the impact on patient outcome in 30 R/R B-ALL patients of baseline CD22 expression in terms of CD22 blast percentage and CD22 fluorescent intensity (CD22-FI) was explored. Secondly, baseline gene expression profile of 18 R/R B-ALL patient samples was analyzed. For statistical analysis of differentially expressed genes (DEGs) patients were divided in non-responders (NR), defined as either INO-refractory or with duration of response (DoR) < 3 months, and responders (R). Gene expression results were analyzed with Ingenuity pathway analysis (IPA). Results: In our patient set higher CD22-FI, defined as higher quartiles (Q2-Q4), correlated with better patient outcome in terms of CR rate, OS and DoR, compared to lower CD22-FI (Q1). CD22 blast percentage was less able to discriminate patients’ outcome, although a trend for better outcome in patients with CD22 ≥ 90% could be appreciated. Concerning gene expression profile, 32 genes with corrected p value <0.05 and absolute FC ≥2 were differentially expressed in NR as compared to R. IPA upstream regulator and regulator effect analysis individuated the inhibition of tumor suppressor HIPK2 as causal upstream condition of the downregulation of 6 DEGs. Conclusions: CD22-FI integrates CD22-percentage on leukemic blasts for a more comprehensive target pre-treatment evaluation. Moreover, a unique pattern of gene expression signature based on HIPK2 downregulation was identified, providing important insights in mechanisms of resistance to INO.