9 resultados para Congestion Charging
em AMS Tesi di Dottorato - Alm@DL - Università di Bologna
Resumo:
An essential role in the global energy transition is attributed to Electric Vehicles (EVs) the energy for EV traction can be generated by renewable energy sources (RES), also at a local level through distributed power plants, such as photovoltaic (PV) systems. However, EV integration with electrical systems might not be straightforward. The intermittent RES, combined with the high and uncontrolled aggregate EV charging, require an evolution toward new planning and paradigms of energy systems. In this context, this work aims to provide a practical solution for EV charging integration in electrical systems with RES. A method for predicting the power required by an EV fleet at the charging hub (CH) is developed in this thesis. The proposed forecasting method considers the main parameters on which charging demand depends. The results of the EV charging forecasting method are deeply analyzed under different scenarios. To reduce the EV load intermittency, methods for managing the charging power of EVs are proposed. The main target was to provide Charging Management Systems (CMS) that modulate EV charging to optimize specific performance indicators such as system self-consumption, peak load reduction, and PV exploitation. Controlling the EV charging power to achieve specific optimization goals is also known as Smart Charging (SC). The proposed techniques are applied to real-world scenarios demonstrating performance improvements in using SC strategies. A viable alternative to maximize integration with intermittent RES generation is the integration of energy storage. Battery Energy Storage Systems (BESS) may be a buffer between peak load and RES production. A sizing algorithm for PV+BESS integration in EV charging hubs is provided. The sizing optimization aims to optimize the system's energy and economic performance. The results provide an overview of the optimal size that the PV+BESS plant should have to improve whole system performance in different scenarios.
Resumo:
The aim of this PhD thesis is to study accurately and in depth the figure and the literary production of the intellectual Jacopo Aconcio. This minor author of the 16th century has long been considered a sort of “enigmatic character”, a profile which results from the work of those who, for many centuries, have left his writing to its fate: a story of constant re-readings and equally incessant oversights. This is why it is necessary to re-read Aconcio’s production in its entirety and to devote to it a monographic study. Previous scholars’ interpretations will obviously be considered, but at the same time an effort will be made to go beyond them through the analysis of both published and manuscript sources, in the attempt to attain a deeper understanding of the figure of this man, who was a Christian, a military and hydraulic engineer and a political philosopher,. The title of the thesis was chosen to emphasise how, throughout the three years of the doctorate, my research concentrated in equal measure and with the same degree of importance on all the reflections and activities of Jacopo Aconcio. My object, in fact, was to establish how and to what extent the methodological thinking of the intellectual found application in, and at the same time guided, his theoretical and practical production. I did not mention in the title the author’s religious thinking, which has always been considered by everyone the most original and interesting element of his production, because religion, from the Reformation onwards, was primarily a political question and thus it was treated by almost all the authors involved in the Protestant movement - Aconcio in the first place. Even the remarks concerning the private, intimate sphere of faith have therefore been analysed in this light: only by acknowledging the centrality of the “problem of politics” in Aconcio’s theories, in fact, is it possible to interpret them correctly. This approach proves the truth of the theoretical premise to my research, that is to say the unity and orderliness of the author’s thought: in every field of knowledge, Aconcio applies the rules of the methodus resolutiva, as a means to achieve knowledge and elaborate models of pacific cohabitation in society. Aconcio’s continuous references to method can make his writing pedant and rather complex, but at the same time they allow for a consistent and valid analysis of different disciplines. I have not considered the fact that most of his reflections appear to our eyes as strongly conditioned by the time in which he lived as a limit. To see in him, as some have done, the forerunner of Descartes’ methodological discourse or, conversely, to judge his religious theories as not very modern, is to force the thought of an author who was first and foremost a Christian man of his own time. Aconcio repeats this himself several times in his writings: he wants to provide individuals with the necessary tools to reach a full-fledged scientific knowledge in the various fields, and also to enable them to seek truth incessantly in the religious domain, which is the duty of every human being. The will to find rules, instruments, effective solutions characterizes the whole of the author’s corpus: Aconcio feels he must look for truth in all the arts, aware as he is that anything can become science as long as it is analysed with method. Nevertheless, he remains a man of his own time, a Christian convinced of the existence of God, creator and governor of the world, to whom people must account for their own actions. To neglect this fact in order to construct a “character”, a generic forerunner, but not participant, of whatever philosophical current, is a dangerous and sidetracking operation. In this study, I have highlighted how Aconcio’s arguments only reveal their full meaning when read in the context in which they were born, without depriving them of their originality but also without charging them with meanings they do not possess. Through a historical-doctrinal approach, I have tried to analyse the complex web of theories and events which constitute the substratum of Aconcio’s reflection, in order to trace the correct relations between texts and contexts. The thesis is therefore organised in six chapters, dedicated respectively to Aconcio’s biography, to the methodological question, to the author’s engineering activity, to his historical knowledge and to his religious thinking, followed by a last section concerning his fortune throughout the centuries. The above-mentioned complexity is determined by the special historical moment in which the author lived. On the one hand, thanks to the new union between science and technique, the 16th century produces discoveries and inventions which make available a previously unthinkable number of notions and lead to a “revolution” in the way of studying and teaching the different subjects, which, by producing a new form of intellectual, involved in politics but also aware of scientific-technological issues, will contribute to the subsequent birth of modern science. On the other, the 16th century is ravaged by religious conflicts, which shatter the unity of the Christian world and generate theological-political disputes which will inform the history of European states for many decades. My aim is to show how Aconcio’s multifarious activity is the conscious fruit of this historical and religious situation, as well as the attempt of an answer to the request of a new kind of engagement on the intellectual’s behalf. Plunged in the discussions around methodus, employed in the most important European courts, involved in the abrupt acceleration of technical-scientific activities, and especially concerned by the radical religious reformation brought on by the Protestant movement, Jacopo Aconcio reflects this complex conjunction in his writings, without lacking in order and consistency, differently from what many scholars assume. The object of this work, therefore, is to highlight the unity of the author’s thought, in which science, technique, faith and politics are woven into a combination which, although it may appear illogical and confused, is actually tidy and methodical, and therefore in agreement with Aconcio’s own intentions and with the specific characters of European culture in the Renaissance. This theory is confirmed by the reading of the Ars muniendorum oppidorum, Aconcio’s only work which had been up till now unavailable. I am persuaded that only a methodical reading of Aconcio’s works, without forgetting nor glorifying any single one, respects the author’s will. From De methodo (1558) onwards, all his writings are summae, guides for the reader who wishes to approach the study of the various disciplines. Undoubtedly, Satan’s Stratagems (1565) is something more, not only because of its length, but because it deals with the author’s main interest: the celebration of doubt and debate as bases on which to build religious tolerance, which is the best method for pacific cohabitation in society. This, however, does not justify the total centrality which the Stratagems have enjoyed for centuries, at the expense of a proper understanding of the author’s will to offer examples of methodological rigour in all sciences. Maybe it is precisely because of the reforming power of Aconcio’s thought that, albeit often forgotten throughout the centuries, he has never ceased to reappear and continues to draw attention, both as a man and as an author. His ideas never stop stimulating the reader’s curiosity and this may ultimately be the best demonstration of their worth, independently from the historical moment in which they come back to the surface.
Resumo:
The development of safe, high energy and power electrochemical energy-conversion systems can be a response to the worldwide demand for a clean and low-fuel-consuming transport. This thesis work, starting from a basic studies on the ionic liquid (IL) electrolytes and carbon electrodes and concluding with tests on large-size IL-based supercapacitor prototypes demonstrated that the IL-based asymmetric configuration (AEDLCs) is a powerful strategy to develop safe, high-energy supercapacitors that might compete with lithium-ion batteries in power assist-hybrid electric vehicles (HEVs). The increase of specific energy in EDLCs was achieved following three routes: i) the use of hydrophobic ionic liquids (ILs) as electrolytes; ii) the design and preparation of carbon electrode materials of tailored morphology and surface chemistry to feature high capacitance response in IL and iii) the asymmetric double-layer carbon supercapacitor configuration (AEDLC) which consists of assembling the supercapacitor with different carbon loadings at the two electrodes in order to exploit the wide electrochemical stability window (ESW) of IL and to reach high maximum cell voltage (Vmax). Among the various ILs investigated the N-methoxyethyl-N-methylpyrrolidinium bis(trifluoromethanesulfonyl)imide (PYR1(2O1)TFSI) was selected because of its hydrophobicity and high thermal stability up to 350 °C together with good conductivity and wide ESW, exploitable in a wide temperature range, below 0°C. For such exceptional properties PYR1(2O1)TFSI was used for the whole study to develop large size IL-based carbon supercapacitor prototype. This work also highlights that the use of ILs determines different chemical-physical properties at the interface electrode/electrolyte with respect to that formed by conventional electrolytes. Indeed, the absence of solvent in ILs makes the properties of the interface not mediated by the solvent and, thus, the dielectric constant and double-layer thickness strictly depend on the chemistry of the IL ions. The study of carbon electrode materials evidences several factors that have to be taken into account for designing performing carbon electrodes in IL. The heat-treatment in inert atmosphere of the activated carbon AC which gave ACT carbon featuring ca. 100 F/g in IL demonstrated the importance of surface chemistry in the capacitive response of the carbons in hydrophobic ILs. The tailored mesoporosity of the xerogel carbons is a key parameter to achieve high capacitance response. The CO2-treated xerogel carbon X3a featured a high specific capacitance of 120 F/g in PYR14TFSI, however, exhibiting high pore volume, an excess of IL is required to fill the pores with respect to that necessary for the charge-discharge process. Further advances were achieved with electrodes based on the disordered template carbon DTC7 with pore size distribution centred at 2.7 nm which featured a notably high specific capacitance of 140 F/g in PYR14TFSI and a moderate pore volume, V>1.5 nm of 0.70 cm3/g. This thesis work demonstrated that by means of the asymmetric configuration (AEDLC) it was possible to reach high cell voltage up to 3.9 V. Indeed, IL-based AEDLCs with the X3a or ACT carbon electrodes exhibited specific energy and power of ca. 30 Wh/kg and 10 kW/kg, respectively. The DTC7 carbon electrodes, featuring a capacitance response higher of 20%-40% than those of X3a and ACT, respectively, enabled the development of a PYR14TFSI-based AEDLC with specific energy and power of 47 Wh/kg and 13 kW/kg at 60°C with Vmax of 3.9 V. Given the availability of the ACT carbon (obtained from a commercial material), the PYR1(2O1)TFSI-based AEDLCs assembled with ACT carbon electrodes were selected within the EU ILHYPOS project for the development of large-size prototypes. This study demonstrated that PYR1(2O1)TFSI-based AEDLC can operate between -30°C and +60°C and its cycling stability was proved at 60°C up to 27,000 cycles with high Vmax up to 3.8 V. Such AEDLC was further investigated following USABC and DOE FreedomCAR reference protocols for HEV to evaluate its dynamic pulse-power and energy features. It was demonstrated that with Vmax of 3.7 V at T> 30 °C the challenging energy and power targets stated by DOE for power-assist HEVs, and at T> 0 °C the standards for the 12V-TSS and 42V-FSS and TPA 2s-pulse applications are satisfied, if the ratio wmodule/wSC = 2 is accomplished, which, however, is a very demanding condition. Finally, suggestions for further advances in IL-based AEDLC performance were found. Particularly, given that the main contribution to the ESR is the electrode charging resistance, which in turn is affected by the ionic resistance in the pores that is also modulated by pore length, the pore geometry is a key parameter in carbon design not only because it defines the carbon surface but also because it can differentially “amplify” the effect of IL conductivity on the electrode charging-discharging process and, thus, supercapacitor time constant.
Resumo:
This research was designed to answer the question of which direction the restructuring of financial regulators should take – consolidation or fragmentation. This research began by examining the need for financial regulation and its related costs. It then continued to describe what types of regulatory structures exist in the world; surveying the regulatory structures in 15 jurisdictions, comparing them and discussing their strengths and weaknesses. This research analyzed the possible regulatory structures using three methodological tools: Game-Theory, Institutional-Design, and Network-Effects. The incentives for regulatory action were examined in Chapter Four using game theory concepts. This chapter predicted how two regulators with overlapping supervisory mandates will behave in two different states of the world (where they can stand to benefit from regulating and where they stand to lose). The insights derived from the games described in this chapter were then used to analyze the different supervisory models that exist in the world. The problem of information-flow was discussed in Chapter Five using tools from institutional design. The idea is based on the need for the right kind of information to reach the hands of the decision maker in the shortest time possible in order to predict, mitigate or stop a financial crisis from occurring. Network effects and congestion in the context of financial regulation were discussed in Chapter Six which applied the literature referring to network effects in general in an attempt to conclude whether consolidating financial regulatory standards on a global level might also yield other positive network effects. Returning to the main research question, this research concluded that in general the fragmented model should be preferable to the consolidated model in most cases as it allows for greater diversity and information-flow. However, in cases in which close cooperation between two authorities is essential, the consolidated model should be used.
Resumo:
Background: Survival of patients with Acute Aortic Syndrome (AAS) may relate to the speed of diagnosis. Diagnostic delay is exacerbated by non classical presentations such as myocardial ischemia or acute heart failure (AHF). However little is known about clinical implications and pathophysiological mechanisms of Troponin T elevation and AHF in AAS. Methods and Results: Data were collected from a prospective metropolitan AAS registry (398 patients diagnosed between 2000 and 2013). Troponin T values (either standard or high sensitivity assay, HS) were available in 248 patients (60%) of the registry population; the overall frequency of troponin positivity was 28% (ranging from 16% to 54%, using standard or HS assay respectively, p = 0.001). Troponin positivity was associated with a twofold increased risk of long in-hospital diagnostic time (OR 1.92, 95% CI 1.05-3.52, p = 0.03), but not with in-hospital mortality. The combination of positive troponin and ACS-like ECG abnormalities resulted in a significantly increased risk of inappropriate therapy due to a misdiagnosis of ACS (OR 2.48, 95% CI 1.12-5.54, p = 0.02). Patients with AHF were identified by the presence of dyspnea as presentation symptom or radiological signs of pulmonary congestion or cardiogenic shock. The overall frequency of AHF was 28 % (32% type A vs. 20% type B AAS, p = 0.01). AHF was due to a variety of pathophysiological mechanisms including cardiac tamponade (26%), aortic regurgitation (25%), myocardial ischemia (17%), hypertensive crisis (10%). AHF was associated with increased surgical delay and with increased risk of in-hospital death (adjusted OR 1.97 95% CI1.13-3.37,p=0.01). Conclusions: Troponin positivity (particularly HS) was a frequent finding in AAS. Abnormal troponin values were strongly associated with ACS-like ECG findings, in-hospital diagnostic delay, and inappropriate therapy. AHF was associated with increased surgical delay and was an independent predictor of in-hospital mortality.
Resumo:
Nowadays the rise of non-recurring engineering (NRE) costs associated with complexity is becoming a major factor in SoC design, limiting both scaling opportunities and the flexibility advantages offered by the integration of complex computational units. The introduction of embedded programmable elements can represent an appealing solution, able both to guarantee the desired flexibility and upgradabilty and to widen the SoC market. In particular embedded FPGA (eFPGA) cores can provide bit-level optimization for those applications which benefits from synthesis, paying on the other side in terms of performance penalties and area overhead with respect to standard cell ASIC implementations. In this scenario this thesis proposes a design methodology for a synthesizable programmable device designed to be embedded in a SoC. A soft-core embedded FPGA (eFPGA) is hence presented and analyzed in terms of the opportunities given by a fully synthesizable approach, following an implementation flow based on Standard-Cell methodology. A key point of the proposed eFPGA template is that it adopts a Multi-Stage Switching Network (MSSN) as the foundation of the programmable interconnects, since it can be efficiently synthesized and optimized through a standard cell based implementation flow, ensuring at the same time an intrinsic congestion-free network topology. The evaluation of the flexibility potentialities of the eFPGA has been performed using different technology libraries (STMicroelectronics CMOS 65nm and BCD9s 0.11μm) through a design space exploration in terms of area-speed-leakage tradeoffs, enabled by the full synthesizability of the template. Since the most relevant disadvantage of the adopted soft approach, compared to a hardcore, is represented by a performance overhead increase, the eFPGA analysis has been made targeting small area budgets. The generation of the configuration bitstream has been obtained thanks to the implementation of a custom CAD flow environment, and has allowed functional verification and performance evaluation through an application-aware analysis.
Resumo:
The efficiency of airport airside operations is often compromised by unplanned disruptive events of different kinds, such as bad weather, strikes or technical failures, which negatively influence the punctuality and regularity of operations, causing serious delays and unexpected congestion. They may provoke important impacts and economic losses on passengers, airlines and airport operators, and consequences may propagate in the air network throughout different airports. In order to identify strategies to cope with such events and minimize their impacts, it is crucial to understand how disruptive events affect airports’ performance. The research field related with the risk of severe air transport network disruptions and their impact on society is related to the concepts of vulnerability and resilience. The main objective of this project is to provide a framework that allows to evaluate performance losses and consequences due to unexpected disruptions affecting airport airside operations, supporting the development of a methodology for estimating vulnerability and resilience indicators for airport airside operations. The methodology proposed comprises three phases. In the first phase, airside operations are modelled in both the baseline and disrupted scenarios. The model includes all main airside processes and takes into consideration the uncertainties and dynamics of the system. In the second phase, the model is implemented by using a generic simulation software, AnyLogic. Vulnerability is evaluated by taking into consideration the costs related to flight delays, cancellations and diversions; resilience is determined as a function of the loss of capacity during the entire period of disruption. In the third phase, a Bayesian Network is built in which uncertain variables refer to airport characteristics and disruption type. The Bayesian Network expresses the conditional dependence among these variables and allows to predict the impacts of disruptions on an airside system, determining the elements which influence the system resilience the most.
Resumo:
The work activities reported in this PhD thesis regard the functionalization of composite materials and the realization of energy harvesting devices by using nanostructured piezoelectric materials, which can be integrated in the composite without affecting its mechanical properties. The self-sensing composite materials were fabricated by interleaving between the plies of the laminate the piezoelectric elements. The problem of negatively impacting on the mechanical properties of the hosting structure was addressed by shaping the piezoelectric materials in appropriate ways. In the case of polymeric piezoelectric materials, the electrospinning technique allowed to produce highly-porous nanofibrous membranes which can be immerged in the hosting matrix without inducing delamination risk. The flexibility of the polymers was exploited also for the production of flexible tactile sensors. The sensing performances of the specimens were evaluated also in terms of lifetime with fatigue tests. In the case of ceramic piezo-materials, the production and the interleaving of nanometric piezoelectric powder limitedly affected the impact resistance of the laminate, which showed enhanced sensing properties. In addition to this, a model was proposed to predict the piezoelectric response of the self-sensing composite materials as function of the amount of the piezo-phase within the laminate and to adapt its sensing functionalities also for quasi-static loads. Indeed, one final application of the work was to integrate the piezoelectric nanofibers in the sole of a prosthetic foot in order to detect the walking cycle, which has a period in the order of 1 second. In the end, the energy harvesting capabilities of the piezoelectric materials were investigated, with the aim to design wearable devices able to collect energy from the environment and from the body movements. The research activities focused both on the power transfer capability to an external load and the charging of an energy storage unit, like, e.g., a supercapacitor.
Resumo:
A robust and well-distributed backbone charging network is the priority to ensure widespread electrification of road transport, providing a driving experience similar to that of internal combustion engine vehicles. International standards set multiple technical targets for on-board and off-board electric vehicle chargers; output voltage levels, harmonic emissions, and isolation requirements strongly influence the design of power converters. Additionally, smart-grid services such as vehicle-to-grid and vehicle-to-vehicle require the implementation of bi-directional stages that inevitably increase system complexity and component count. To face these design challenges, the present thesis provides a rigorous analysis of four-leg and split-capacitor three-phase four-wire active front-end topologies focusing on the harmonic description under different modulation techniques and conditions. The resulting analytical formulation paves the way for converter performance improvements while maintaining regulatory constraints and technical requirements under control. Specifically, split-capacitor inverter current ripple was characterized as providing closed-form formulations valid for every sub-case ranging from synchronous to interleaved PWM. Outcomes are the base for a novel variable switching PWM technique capable of mediating harmonic content limitation and switching loss reduction. A similar analysis is proposed for four-leg inverters with a broad range of continuous and discontinuous PWM modulations. The general superiority of discontinuous PWM modulation in reducing switching losses and limiting harmonic emission was demonstrated. Developments are realized through a parametric description of the neutral wire inductor. Finally, a novel class of integrated isolated converter topologies is proposed aiming at the neutral wire delivery without employing extra switching components rather than the one already available in typical three-phase inverter and dual-active-bridge back-to-back configurations. The fourth leg was integrated inside the dual-active-bridge input bridge providing relevant component count savings. A novel modified single-phase-shift modulation technique was developed to ensure a seamless transition between working conditions like voltage level and power factor. Several simulations and experiments validate the outcomes.