3 resultados para Conductive Silicone Rubber Vulcanizates
em AMS Tesi di Dottorato - Alm@DL - Università di Bologna
Resumo:
In recent years, nanotechnologies have led to the production of materials with new and sometimes unexpected qualities through the manipulation of nanoscale components. This research aimed primarily to the study of the correlation between hierarchical structures of hybrid organic-inorganic materials such as conductive polymer composites (CPCs). Using a bottom-up methodology, we could synthesize a wide range of inorganic nanometric materials with a high degree of homogeneity and purity, such as thiol capped metal nanoparticles, stoichiometric geomimetic chrysotile nanotubes and metal dioxide nanoparticles. It was also possible to produce inorganic systems formed from the interaction between the synthesized materials. These synthesized materials and others like multiwalled carbon nanotubes and grapheme oxide were used to produce conductive polymer composites. Electrospinning causes polymer fibers to become elongated using an electric field. This technique was used to produce fibers with a nanometric diameter of a polymer blend based on two different intrinsically conducting polymers polymers (ICPs): polyaniline (PANI) and poly(3-hexylthiophene) (P3HT). Using different materials as second phase in the initial electrospun polymer fibers caused significant changes to the material hierarchical structure, leading to the creation of CPCs with modified electrical properties. Further study of the properties of these new materials resulted in a better understanding of the electrical conductivity mechanisms in these electrospun materials.
Resumo:
The concepts of circular economy and sustainability are the basis of the present experimental research that seeks to reduce the environmental impact of traditional road construction materials. This study mainly focuses on the development and the chemo-mechanical characterization of bitumen extenders containing rubber (R) from end-of-life tyres (ELTs) and re-refined engine oil bottoms (REOBs) for the production of innovative and eco-friendly extended bitumens (i.e. bituminous binders containing 25%wt. of recycled products) and asphalt mixtures. In order to create more sustainable asphalt mixes, also recycled aggregates are used for partial replacement of virgin natural aggregates in the aggregate skeleton. The experimental program encompassed five successive steps: (i) the evaluation of physicochemical properties of R and REOB, (ii) the definition of the optimal extenders by the development of a new protocol and their characterizations, (iii) the realization and investigation of the chemo-rheological responses of the extended bitumens at different boundary conditions, (iv) the assessment of the effectiveness of analytical method to predict the rheological parameters of extended bitumens and, finally, (v) the analysis of the mechanical performances of the corresponding asphalt mixtures. A standard 50/70 penetration grade bitumen was chosen as a reference material and the main constituent of the innovative bituminous products. The results of this study underlined the importance of material characterization. The incorporation of R-REOB extenders strongly affects the chemo-rheological responses of the resulting extended bitumens and asphalt mixtures overall the boundary conditions. While the presence of R and the consequent formation of a polymer network improves the elasticity of the final products, especially at high test temperatures; the addition of REOB, softens the bituminous binders and asphalt mixes increasing their response at low test temperatures. Nonetheless, the use of recycled products increased the susceptibility of bituminous material under damaging conditions, which would need further investigations.
Resumo:
Our cities are constantly evolving, and the necessity to improve the condition and safety of the urban infrastructures is fundamental. However, on the roads, the specific needs of cyclists and pedestrians are often neglected. The Vulnerable Road Users (VRUs), among whom cyclists and pedestrians are, rarely benefit from the most innovative safety measures. Inspired by playgrounds and aiming to reduce VRUs injuries, the Impact-Absorbing Pavements (IAP) developed as novel sidewalks, and bike lanes surface layers may help decrease injuries, fatalities, and the related societal costs. To achieve this goal, the End-of-Life Tyres (ELTs) crumb rubber (CR) is used as a primary resource, bringing its elastic properties into the surface layer. The thesis is divided into five main chapters. The first concerns the formulation and the definition of a feasible mix. The second explores the mechanical and environmental properties in detail, and the ageing effect is also assessed. The third describes the modelling of the material to simulate accidents and measure the injury reduction, especially on the head. The fourth chapter is reserved for the field trial. The last gives some perspectives on the research and proposes a way to optimize and improve the data and results collected during the doctoral research. It was observed that the specimens made with cold protocol have noticeable performances and reduce the overall carbon footprint impact of this material. The material modelling and the accident simulation proved the performance of the IAP against head injuries, and the field trial confirmed the good results obtained in the laboratory for the cold-made material. Finally, the outcomes of this thesis opened many prospective to the IAP development, such as the use of a plant-based binder or recycled aggregates and gave a positive prospect of an innovative material to the urban road infrastructures.