3 resultados para Conditional and Unconditional Interval Estimator
em AMS Tesi di Dottorato - Alm@DL - Università di Bologna
Resumo:
The dissertation contains five parts: An introduction, three major chapters, and a short conclusion. The First Chapter starts from a survey and discussion of the studies on corporate law and financial development literature. The commonly used methods in these cross-sectional analyses are biased as legal origins are no longer valid instruments. Hence, the model uncertainty becomes a salient problem. The Bayesian Model Averaging algorithm is applied to test the robustness of empirical results in Djankov et al. (2008). The analysis finds that their constructed legal index is not robustly correlated with most of the various stock market outcome variables. The second Chapter looks into the effects of minority shareholders protection in corporate governance regime on entrepreneurs' ex ante incentives to undertake IPO. Most of the current literature focuses on the beneficial part of minority shareholder protection on valuation, while overlooks its private costs on entrepreneur's control. As a result, the entrepreneur trade-offs the costs of monitoring with the benefits of cheap sources of finance when minority shareholder protection improves. The theoretical predictions are empirically tested using panel data and GMM-sys estimator. The third Chapter investigates the corporate law and corporate governance reform in China. The corporate law in China regards shareholder control as the means to the ends of pursuing the interests of stakeholders, which is inefficient. The Chapter combines the recent development of theories of the firm, i.e., the team production theory and the property rights theory, to solve such problem. The enlightened shareholder value, which emphasizes on the long term valuation of the firm, should be adopted as objectives of listed firms. In addition, a move from the mandatory division of power between shareholder meeting and board meeting to the default regime, is proposed.
Resumo:
In the thesis we present the implementation of the quadratic maximum likelihood (QML) method, ideal to estimate the angular power spectrum of the cross-correlation between cosmic microwave background (CMB) and large scale structure (LSS) maps as well as their individual auto-spectra. Such a tool is an optimal method (unbiased and with minimum variance) in pixel space and goes beyond all the previous harmonic analysis present in the literature. We describe the implementation of the QML method in the {\it BolISW} code and demonstrate its accuracy on simulated maps throughout a Monte Carlo. We apply this optimal estimator to WMAP 7-year and NRAO VLA Sky Survey (NVSS) data and explore the robustness of the angular power spectrum estimates obtained by the QML method. Taking into account the shot noise and one of the systematics (declination correction) in NVSS, we can safely use most of the information contained in this survey. On the contrary we neglect the noise in temperature since WMAP is already cosmic variance dominated on the large scales. Because of a discrepancy in the galaxy auto spectrum between the estimates and the theoretical model, we use two different galaxy distributions: the first one with a constant bias $b$ and the second one with a redshift dependent bias $b(z)$. Finally, we make use of the angular power spectrum estimates obtained by the QML method to derive constraints on the dark energy critical density in a flat $\Lambda$CDM model by different likelihood prescriptions. When using just the cross-correlation between WMAP7 and NVSS maps with 1.8° resolution, we show that $\Omega_\Lambda$ is about the 70\% of the total energy density, disfavouring an Einstein-de Sitter Universe at more than 2 $\sigma$ CL (confidence level).
Resumo:
In the past two decades the work of a growing portion of researchers in robotics focused on a particular group of machines, belonging to the family of parallel manipulators: the cable robots. Although these robots share several theoretical elements with the better known parallel robots, they still present completely (or partly) unsolved issues. In particular, the study of their kinematic, already a difficult subject for conventional parallel manipulators, is further complicated by the non-linear nature of cables, which can exert only efforts of pure traction. The work presented in this thesis therefore focuses on the study of the kinematics of these robots and on the development of numerical techniques able to address some of the problems related to it. Most of the work is focused on the development of an interval-analysis based procedure for the solution of the direct geometric problem of a generic cable manipulator. This technique, as well as allowing for a rapid solution of the problem, also guarantees the results obtained against rounding and elimination errors and can take into account any uncertainties in the model of the problem. The developed code has been tested with the help of a small manipulator whose realization is described in this dissertation together with the auxiliary work done during its design and simulation phases.