15 resultados para Condensed Phase Velocity Map Imaging

em AMS Tesi di Dottorato - Alm@DL - Università di Bologna


Relevância:

100.00% 100.00%

Publicador:

Resumo:

In this thesis the use of widefield imaging techniques and VLBI observations with a limited number of antennas are explored. I present techniques to efficiently and accurately image extremely large UV datasets. Very large VLBI datasets must be reduced into multiple, smaller datasets if today’s imaging algorithms are to be used to image them. I present a procedure for accurately shifting the phase centre of a visibility dataset. This procedure has been thoroughly tested and found to be almost two orders of magnitude more accurate than existing techniques. Errors have been found at the level of one part in 1.1 million. These are unlikely to be measurable except in the very largest UV datasets. Results of a four-station VLBI observation of a field containing multiple sources are presented. A 13 gigapixel image was constructed to search for sources across the entire primary beam of the array by generating over 700 smaller UV datasets. The source 1320+299A was detected and its astrometric position with respect to the calibrator J1329+3154 is presented. Various techniques for phase calibration and imaging across this field are explored including using the detected source as an in-beam calibrator and peeling of distant confusing sources from VLBI visibility datasets. A range of issues pertaining to wide-field VLBI have been explored including; parameterising the wide-field performance of VLBI arrays; estimating the sensitivity across the primary beam both for homogeneous and heterogeneous arrays; applying techniques such as mosaicing and primary beam correction to VLBI observations; quantifying the effects of time-average and bandwidth smearing; and calibration and imaging of wide-field VLBI datasets. The performance of a computer cluster at the Istituto di Radioastronomia in Bologna has been characterised with regard to its ability to correlate using the DiFX software correlator. Using existing software it was possible to characterise the network speed particularly for MPI applications. The capabilities of the DiFX software correlator, running on this cluster, were measured for a range of observation parameters and were shown to be commensurate with the generic performance parameters measured. The feasibility of an Italian VLBI array has been explored, with discussion of the infrastructure required, the performance of such an array, possible collaborations, and science which could be achieved. Results from a 22 GHz calibrator survey are also presented. 21 out of 33 sources were detected on a single baseline between two Italian antennas (Medicina to Noto). The results and discussions presented in this thesis suggest that wide-field VLBI is a technique whose time has finally come. Prospects for exciting new science are discussed in the final chapter.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Over the past ten years, the cross-correlation of long-time series of ambient seismic noise (ASN) has been widely adopted to extract the surface-wave part of the Green’s Functions (GF). This stochastic procedure relies on the assumption that ASN wave-field is diffuse and stationary. At frequencies <1Hz, the ASN is mainly composed by surface-waves, whose origin is attributed to the sea-wave climate. Consequently, marked directional properties may be observed, which call for accurate investigation about location and temporal evolution of the ASN-sources before attempting any GF retrieval. Within this general context, this thesis is aimed at a thorough investigation about feasibility and robustness of the noise-based methods toward the imaging of complex geological structures at the local (∼10-50km) scale. The study focused on the analysis of an extended (11 months) seismological data set collected at the Larderello-Travale geothermal field (Italy), an area for which the underground geological structures are well-constrained thanks to decades of geothermal exploration. Focusing on the secondary microseism band (SM;f>0.1Hz), I first investigate the spectral features and the kinematic properties of the noise wavefield using beamforming analysis, highlighting a marked variability with time and frequency. For the 0.1-0.3Hz frequency band and during Spring- Summer-time, the SMs waves propagate with high apparent velocities and from well-defined directions, likely associated with ocean-storms in the south- ern hemisphere. Conversely, at frequencies >0.3Hz the distribution of back- azimuths is more scattered, thus indicating that this frequency-band is the most appropriate for the application of stochastic techniques. For this latter frequency interval, I tested two correlation-based methods, acting in the time (NCF) and frequency (modified-SPAC) domains, respectively yielding esti- mates of the group- and phase-velocity dispersions. Velocity data provided by the two methods are markedly discordant; comparison with independent geological and geophysical constraints suggests that NCF results are more robust and reliable.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Non Destructive Testing (NDT) and Structural Health Monitoring (SHM) are becoming essential in many application contexts, e.g. civil, industrial, aerospace etc., to reduce structures maintenance costs and improve safety. Conventional inspection methods typically exploit bulky and expensive instruments and rely on highly demanding signal processing techniques. The pressing need to overcome these limitations is the common thread that guided the work presented in this Thesis. In the first part, a scalable, low-cost and multi-sensors smart sensor network is introduced. The capability of this technology to carry out accurate modal analysis on structures undergoing flexural vibrations has been validated by means of two experimental campaigns. Then, the suitability of low-cost piezoelectric disks in modal analysis has been demonstrated. To enable the use of this kind of sensing technology in such non conventional applications, ad hoc data merging algorithms have been developed. In the second part, instead, imaging algorithms for Lamb waves inspection (namely DMAS and DS-DMAS) have been implemented and validated. Results show that DMAS outperforms the canonical Delay and Sum (DAS) approach in terms of image resolution and contrast. Similarly, DS-DMAS can achieve better results than both DMAS and DAS by suppressing artefacts and noise. To exploit the full potential of these procedures, accurate group velocity estimations are required. Thus, novel wavefield analysis tools that can address the estimation of the dispersion curves from SLDV acquisitions have been investigated. An image segmentation technique (called DRLSE) was exploited in the k-space to draw out the wavenumber profile. The DRLSE method was compared with compressive sensing methods to extract the group and phase velocity information. The validation, performed on three different carbon fibre plates, showed that the proposed solutions can accurately determine the wavenumber and velocities in polar coordinates at multiple excitation frequencies.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Every seismic event produces seismic waves which travel throughout the Earth. Seismology is the science of interpreting measurements to derive information about the structure of the Earth. Seismic tomography is the most powerful tool for determination of 3D structure of deep Earth's interiors. Tomographic models obtained at the global and regional scales are an underlying tool for determination of geodynamical state of the Earth, showing evident correlation with other geophysical and geological characteristics. The global tomographic images of the Earth can be written as a linear combinations of basis functions from a specifically chosen set, defining the model parameterization. A number of different parameterizations are commonly seen in literature: seismic velocities in the Earth have been expressed, for example, as combinations of spherical harmonics or by means of the simpler characteristic functions of discrete cells. With this work we are interested to focus our attention on this aspect, evaluating a new type of parameterization, performed by means of wavelet functions. It is known from the classical Fourier theory that a signal can be expressed as the sum of a, possibly infinite, series of sines and cosines. This sum is often referred as a Fourier expansion. The big disadvantage of a Fourier expansion is that it has only frequency resolution and no time resolution. The Wavelet Analysis (or Wavelet Transform) is probably the most recent solution to overcome the shortcomings of Fourier analysis. The fundamental idea behind this innovative analysis is to study signal according to scale. Wavelets, in fact, are mathematical functions that cut up data into different frequency components, and then study each component with resolution matched to its scale, so they are especially useful in the analysis of non stationary process that contains multi-scale features, discontinuities and sharp strike. Wavelets are essentially used in two ways when they are applied in geophysical process or signals studies: 1) as a basis for representation or characterization of process; 2) as an integration kernel for analysis to extract information about the process. These two types of applications of wavelets in geophysical field, are object of study of this work. At the beginning we use the wavelets as basis to represent and resolve the Tomographic Inverse Problem. After a briefly introduction to seismic tomography theory, we assess the power of wavelet analysis in the representation of two different type of synthetic models; then we apply it to real data, obtaining surface wave phase velocity maps and evaluating its abilities by means of comparison with an other type of parametrization (i.e., block parametrization). For the second type of wavelet application we analyze the ability of Continuous Wavelet Transform in the spectral analysis, starting again with some synthetic tests to evaluate its sensibility and capability and then apply the same analysis to real data to obtain Local Correlation Maps between different model at same depth or between different profiles of the same model.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Supramolecular architectures can be built-up from a single molecular component (building block) to obtain a complex of organic or inorganic interactions creating a new emergent condensed phase of matter, such as gels, liquid crystals and solid crystal. Further the generation of multicomponent supramolecular hybrid architecture, a mix of organic and inorganic components, increases the complexity of the condensed aggregate with functional properties useful for important areas of research, like material science, medicine and nanotechnology. One may design a molecule storing a recognition pattern and programming a informed self-organization process enables to grow-up into a hierarchical architecture. From a molecular level to a supramolecular level, in a bottom-up fashion, it is possible to create a new emergent structure-function, where the system, as a whole, is open to its own environment to exchange energy, matter and information. “The emergent property of the whole assembly is superior to the sum of a singles parts”. In this thesis I present new architectures and functional materials built through the selfassembly of guanosine, in the absence or in the presence of a cation, in solution and on the surface. By appropriate manipulation of intermolecular non-covalent interactions the spatial (structural) and temporal (dynamic) features of these supramolecular architectures are controlled. Guanosine G7 (5',3'-di-decanoil-deoxi-guanosine) is able to interconvert reversibly between a supramolecular polymer and a discrete octameric species by dynamic cation binding and release. Guanosine G16 (2',3'-O-Isopropylidene-5'-O-decylguanosine) shows selectivity binding from a mix of different cation's nature. Remarkably, reversibility, selectivity, adaptability and serendipity are mutual features to appreciate the creativity of a molecular self-organization complex system into a multilevelscale hierarchical growth. The creativity - in general sense, the creation of a new thing, a new thinking, a new functionality or a new structure - emerges from a contamination process of different disciplines such as biology, chemistry, physics, architecture, design, philosophy and science of complexity.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

High-frequency seismograms contain features that reflect the random inhomogeneities of the earth. In this work I use an imaging method to locate the high contrast small- scale heterogeneity respect to the background earth medium. This method was first introduced by Nishigami (1991) and than applied to different volcanic and tectonically active areas (Nishigami, 1997, Nishigami, 2000, Nishigami, 2006). The scattering imaging method is applied to two volcanic areas: Campi Flegrei and Mt. Vesuvius. Volcanic and seismological active areas are often characterized by complex velocity structures, due to the presence of rocks with different elastic properties. I introduce some modifications to the original method in order to make it suitable for small and highly complex media. In particular, for very complex media the single scattering approximation assumed by Nishigami (1991) is not applicable as the mean free path becomes short. The multiple scattering or diffusive approximation become closer to the reality. In this thesis, differently from the ordinary Nishigami’s method (Nishigami, 1991), I use the mean of the recorded coda envelope as reference curve and calculate the variations from this average envelope. In this way I implicitly do not assume any particular scattering regime for the "average" scattered radiation, whereas I consider the variations as due to waves that are singularly scattered from the strongest heterogeneities. The imaging method is applied to a relatively small area (20 x 20 km), this choice being justified by the small length of the analyzed codas of the low magnitude earthquakes. I apply the unmodified Nishigami’s method to the volcanic area of Campi Flegrei and compare the results with the other tomographies done in the same area. The scattering images, obtained with frequency waves around 18 Hz, show the presence of high scatterers in correspondence with the submerged caldera rim in the southern part of the Pozzuoli bay. Strong scattering is also found below the Solfatara crater, characterized by the presence of densely fractured, fluid-filled rocks and by a strong thermal anomaly. The modified Nishigami’s technique is applied to the Mt. Vesuvius area. Results show a low scattering area just below the central cone and a high scattering area around it. The high scattering zone seems to be due to the contrast between the high rigidity body located beneath the crater and the low rigidity materials located around it. The central low scattering area overlaps the hydrothermal reservoirs located below the central cone. An interpretation of the results in terms of geological properties of the medium is also supplied, aiming to find a correspondence of the scattering properties and the geological nature of the material. A complementary result reported in this thesis is that the strong heterogeneity of the volcanic medium create a phenomenon called "coda localization". It has been verified that the shape of the seismograms recorded from the stations located at the top of the volcanic edifice of Mt. Vesuvius is different from the shape of the seismograms recorded at the bottom. This behavior is justified by the consideration that the coda energy is not uniformly distributed within a region surrounding the source for great lapse time.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

The impact of plasma technologies is growing both in the academic and in the industrial fields. Nowadays, a great interest is focused in plasma applications in aeronautics and astronautics domains. Plasma actuators based on the Magneto-Hydro-Dynamic (MHD) and Electro- Hydro-Dynamic (EHD) interactions are potentially able to suitably modify the fluid-dynamics characteristics around a flying body without utilizing moving parts. This could lead to the control of an aircraft with negligible response time, more reliability and improvements of the performance. In order to study the aforementioned interactions, a series of experiments and a wide number of diagnostic techniques have been utilized. The EHD interaction, realized by means of a Dielectric Barrier Discharge (DBD) actuator, and its impact on the boundary layer have been evaluated by means of two different experiments. In the first one a three phase multi-electrode flat panel actuator is used. Different external flow velocities (from 1 to 20m/s) and different values of the supplied voltage and frequency have been considered. Moreover a change of the phase sequence has been done to verify the influence of the electric field existing between successive phases. Measurements of the induced speed had shown the effect of the supply voltage and the frequency, and the phase order in the momentum transfer phenomenon. Gains in velocity, inside the boundary layer, of about 5m/s have been obtained. Spectroscopic measurements allowed to determine the rotational and the vibrational temperature of the plasma which lie in the range of 320 ÷ 440°K and of 3000 ÷ 3900°K respectively. A deviation from thermodynamic equilibrium had been found. The second EHD experiment is realized on a single electrode pair DBD actuator driven by nano-pulses superimposed to a DC or an AC bias. This new supply system separates the plasma formation mechanism from the acceleration action on the fluid, leading to an higher degree of the control of the process. Both the voltage and the frequency of the nano-pulses and the amplitude and the waveform of the bias have been varied during the experiment. Plasma jets and vortex behavior had been observed by means of fast Schlieren imaging. This allowed a deeper understanding of the EHD interaction process. A velocity increase in the boundary layer of about 2m/s had been measured. Thrust measurements have been performed by means of a scales and compared with experimental data reported in the literature. For similar voltage amplitudes thrust larger than those of the literature, had been observed. Surface charge measurements led to realize a modified DBD actuator able to obtain similar performances when compared with that of other experiments. However in this case a DC bias replacing the AC bias had been used. MHD interaction experiments had been carried out in a hypersonic wind tunnel in argon with a flow of Mach 6. Before the MHD experiments a thermal, fluid-dynamic and plasma characterization of the hypersonic argon plasma flow have been done. The electron temperature and the electron number density had been determined by means of emission spectroscopy and microwave absorption measurements. A deviation from thermodynamic equilibrium had been observed. The electron number density showed to be frozen at the stagnation region condition in the expansion through the nozzle. MHD experiments have been performed using two axial symmetric test bodies. Similar magnetic configurations were used. Permanent magnets inserted into the test body allowed to generate inside the plasma azimuthal currents around the conical shape of the body. These Faraday currents are responsible of the MHD body force which acts against the flow. The MHD interaction process has been observed by means of fast imaging, pressure and electrical measurements. Images showed bright rings due to the Faraday currents heating and exciting the plasma particles. Pressure measurements showed increases of the pressure in the regions where the MHD interaction is large. The pressure is 10 to 15% larger than when the MHD interaction process is silent. Finally by means of electrostatic probes mounted flush on the test body lateral surface Hall fields of about 500V/m had been measured. These results have been used for the validation of a numerical MHD code.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Satellite SAR (Synthetic Aperture Radar) interferometry represents a valid technique for digital elevation models (DEM) generation, providing metric accuracy even without ancillary data of good quality. Depending on the situations the interferometric phase could be interpreted both as topography and as a displacement eventually occurred between the two acquisitions. Once that these two components have been separated it is possible to produce a DEM from the first one or a displacement map from the second one. InSAR DEM (Digital Elevation Model) generation in the cryosphere is not a straightforward operation because almost every interferometric pair contains also a displacement component, which, even if small, when interpreted as topography during the phase to height conversion step could introduce huge errors in the final product. Considering a glacier, assuming the linearity of its velocity flux, it is therefore necessary to differentiate at least two pairs in order to isolate the topographic residue only. In case of an ice shelf the displacement component in the interferometric phase is determined not only by the flux of the glacier but also by the different heights of the two tides. As a matter of fact even if the two scenes of the interferometric pair are acquired at the same time of the day only the main terms of the tide disappear in the interferogram, while the other ones, smaller, do not elide themselves completely and so correspond to displacement fringes. Allowing for the availability of tidal gauges (or as an alternative of an accurate tidal model) it is possible to calculate a tidal correction to be applied to the differential interferogram. It is important to be aware that the tidal correction is applicable only knowing the position of the grounding line, which is often a controversial matter. In this thesis it is described the methodology applied for the generation of the DEM of the Drygalski ice tongue in Northern Victoria Land, Antarctica. The displacement has been determined both in an interferometric way and considering the coregistration offsets of the two scenes. A particular attention has been devoted to investigate the importance of the role of some parameters, such as timing annotations and orbits reliability. Results have been validated in a GIS environment by comparison with GPS displacement vectors (displacement map and InSAR DEM) and ICEsat GLAS points (InSAR DEM).

Relevância:

30.00% 30.00%

Publicador:

Resumo:

The southern Apennines of Italy have been experienced several destructive earthquakes both in historic and recent times. The present day seismicity, characterized by small-to-moderate magnitude earthquakes, was used like a probe to obatin a deeper knowledge of the fault structures where the largest earthquakes occurred in the past. With the aim to infer a three dimensional seismic image both the problem of data quality and the selection of a reliable and robust tomographic inversion strategy have been faced. The data quality has been obtained to develop optimized procedures for the measurements of P- and S-wave arrival times, through the use of polarization filtering and to the application of a refined re-picking technique based on cross-correlation of waveforms. A technique of iterative tomographic inversion, linearized, damped combined with a strategy of multiscale inversion type has been adopted. The retrieved P-wave velocity model indicates the presence of a strong velocity variation along a direction orthogonal to the Apenninic chain. This variation defines two domains which are characterized by a relatively low and high velocity values. From the comparison between the inferred P-wave velocity model with a portion of a structural section available in literature, the high velocity body was correlated with the Apulia carbonatic platforms whereas the low velocity bodies was associated to the basinal deposits. The deduced Vp/Vs ratio shows that the ratio is lower than 1.8 in the shallower part of the model, while for depths ranging between 5 km and 12 km the ratio increases up to 2.1 in correspondence to the area of higher seismicity. This confirms that areas characterized by higher values are more prone to generate earthquakes as a response to the presence of fluids and higher pore-pressures.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

The objective of this thesis was to improve the commercial CFD software Ansys Fluent to obtain a tool able to perform accurate simulations of flow boiling in the slug flow regime. The achievement of a reliable numerical framework allows a better understanding of the bubble and flow dynamics induced by the evaporation and makes possible the prediction of the wall heat transfer trends. In order to save computational time, the flow is modeled with an axisymmetrical formulation. Vapor and liquid phases are treated as incompressible and in laminar flow. By means of a single fluid approach, the flow equations are written as for a single phase flow, but discontinuities at the interface and interfacial effects need to be accounted for and discretized properly. Ansys Fluent provides a Volume Of Fluid technique to advect the interface and to map the discontinuous fluid properties throughout the flow domain. The interfacial effects are dominant in the boiling slug flow and the accuracy of their estimation is fundamental for the reliability of the solver. Self-implemented functions, developed ad-hoc, are introduced within the numerical code to compute the surface tension force and the rates of mass and energy exchange at the interface related to the evaporation. Several validation benchmarks assess the better performances of the improved software. Various adiabatic configurations are simulated in order to test the capability of the numerical framework in modeling actual flows and the comparison with experimental results is very positive. The simulation of a single evaporating bubble underlines the dominant effect on the global heat transfer rate of the local transient heat convection in the liquid after the bubble transit. The simulation of multiple evaporating bubbles flowing in sequence shows that their mutual influence can strongly enhance the heat transfer coefficient, up to twice the single phase flow value.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Background: Cardiovascular disease (CVD) is a common cause of morbidity and mortality in childhood chronic kidney disease (CKD). Left ventricular hypertrophy (LVH) is known to be one of the earliest events in CVD development. Left ventricular diastolic function (DF) is thought to be also impaired in children with CKD. Tissue Doppler imaging (TDI) provide an accurate measure of DF and is less load dependent than conventional ECHO. Aim: To evaluate the LV mass and the DF in a population of children with CKD. Methods: 37 patients, median age: 10.4 (3.3-19.8); underlying renal disease: hypo/dysplasia (N=28), nephronophthisis (N=4), Alport (N=2), ARPKD (N=3), were analyzed. Thirty-eight percent of the patients were on stage 1-2 of CKD, 38% on stage 3, 16% on stage 4. Three patients were on dialysis. The most frequent factors related to CVD in CKD have been studied. LVH has been defined as a left ventricular mass index (LVMI) more than 35.7 g/h2,7. Results: Twenty-five patients (81%) had a LVH. LVMI and diastolic function index (E’/A’) were significantly related to the glomerular filtration rate (p<0.003 and p<0.004). Moreover the LVMI was correlated with the phosphorus and the hemoglobin level (p<0.0001 and p<0.004). LVH was present since the first stages of CKD (58% of patients were on stages 1-2). Early-diastolic myocardial velocity was reduced in 73% of our patients. We didn’t find any correlation between LVH and systemic hypertension. Conclusion: ECHO evaluation with TDI is suggested also in children prior to dialysis and with a normal blood pressure. If LVH is diagnosed, a periodic follow-up is necessary with the treatment of the modifiable risk factors (hypertension, disturbances of calcium, phosphorus and PTH, anemia ).

Relevância:

30.00% 30.00%

Publicador:

Resumo:

This thesis is devoted to the study of the properties of high-redsfhit galaxies in the epoch 1 < z < 3, when a substantial fraction of galaxy mass was assembled, and when the evolution of the star-formation rate density peaked. Following a multi-perspective approach and using the most recent and high-quality data available (spectra, photometry and imaging), the morphologies and the star-formation properties of high-redsfhit galaxies were investigated. Through an accurate morphological analyses, the built up of the Hubble sequence was placed around z ~ 2.5. High-redshift galaxies appear, in general, much more irregular and asymmetric than local ones. Moreover, the occurrence of morphological k-­correction is less pronounced than in the local Universe. Different star-formation rate indicators were also studied. The comparison of ultra-violet and optical based estimates, with the values derived from infra-red luminosity showed that the traditional way of addressing the dust obscuration is problematic, at high-redshifts, and new models of dust geometry and composition are required. Finally, by means of stacking techniques applied to rest-frame ultra-violet spectra of star-forming galaxies at z~2, the warm phase of galactic-scale outflows was studied. Evidence was found of escaping gas at velocities of ~ 100 km/s. Studying the correlation of inter-­stellar absorption lines equivalent widths with galaxy physical properties, the intensity of the outflow-related spectral features was proven to depend strongly on a combination of the velocity dispersion of the gas and its geometry.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

The purpose of my PhD thesis has been to face the issue of retrieving a three dimensional attenuation model in volcanic areas. To this purpose, I first elaborated a robust strategy for the analysis of seismic data. This was done by performing several synthetic tests to assess the applicability of spectral ratio method to our purposes. The results of the tests allowed us to conclude that: 1) spectral ratio method gives reliable differential attenuation (dt*) measurements in smooth velocity models; 2) short signal time window has to be chosen to perform spectral analysis; 3) the frequency range over which to compute spectral ratios greatly affects dt* measurements. Furthermore, a refined approach for the application of spectral ratio method has been developed and tested. Through this procedure, the effects caused by heterogeneities of propagation medium on the seismic signals may be removed. The tested data analysis technique was applied to the real active seismic SERAPIS database. It provided a dataset of dt* measurements which was used to obtain a three dimensional attenuation model of the shallowest part of Campi Flegrei caldera. Then, a linearized, iterative, damped attenuation tomography technique has been tested and applied to the selected dataset. The tomography, with a resolution of 0.5 km in the horizontal directions and 0.25 km in the vertical direction, allowed to image important features in the off-shore part of Campi Flegrei caldera. High QP bodies are immersed in a high attenuation body (Qp=30). The latter is well correlated with low Vp and high Vp/Vs values and it is interpreted as a saturated marine and volcanic sediments layer. High Qp anomalies, instead, are interpreted as the effects either of cooled lava bodies or of a CO2 reservoir. A pseudo-circular high Qp anomaly was detected and interpreted as the buried rim of NYT caldera.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

The Deep Underground Neutrino Experiment (DUNE) is a long-baseline accelerator experiment designed to make a significant contribution to the study of neutrino oscillations with unprecedented sensitivity. The main goal of DUNE is the determination of the neutrino mass ordering and the leptonic CP violation phase, key parameters of the three-neutrino flavor mixing that have yet to be determined. An important component of the DUNE Near Detector complex is the System for on-Axis Neutrino Detection (SAND) apparatus, which will include GRAIN (GRanular Argon for Interactions of Neutrinos), a novel liquid Argon detector aimed at imaging neutrino interactions using only scintillation light. For this purpose, an innovative optical readout system based on Coded Aperture Masks is investigated. This dissertation aims to demonstrate the feasibility of reconstructing particle tracks and the topology of CCQE (Charged Current Quasi Elastic) neutrino events in GRAIN with such a technique. To this end, the development and implementation of a reconstruction algorithm based on Maximum Likelihood Expectation Maximization was carried out to directly obtain a three-dimensional distribution proportional to the energy deposited by charged particles crossing the LAr volume. This study includes the evaluation of the design of several camera configurations and the simulation of a multi-camera optical system in GRAIN.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

DUNE is a next-generation long-baseline neutrino oscillation experiment. It aims to measure the still unknown $ \delta_{CP} $ violation phase and the sign of $ \Delta m_{13}^2 $, which defines the neutrino mass ordering. DUNE will exploit a Far Detector composed of four multi-kiloton LArTPCs, and a Near Detector (ND) complex located close to the neutrino source at Fermilab. The SAND detector at the ND complex is designed to perform on-axis beam monitoring, constrain uncertainties in the oscillation analysis and perform precision neutrino physics measurements. SAND includes a 0.6 T super-conductive magnet, an electromagnetic calorimeter, a 1-ton liquid Argon detector - GRAIN - and a modular, low-density straw tube target tracker system. GRAIN is an innovative LAr detector where neutrino interactions can be reconstructed using only the LAr scintillation light imaged by an optical system based on Coded Aperture masks and lenses - a novel approach never used before in particle physics applications. In this thesis, a first evaluation of GRAIN track reconstruction and calorimetric capabilities was obtained with an optical system based on Coded Aperture cameras. A simulation of $\nu_\mu + Ar$ interactions with the energy spectrum expected at the future Fermilab Long Baseline Neutrino Facility (LBNF) was performed. The performance of SAND was evaluated, combining the information provided by all its sub-detectors, on the selection of $ \nu_\mu + Ar \to \mu^- + p + X $ sample and on the neutrino energy reconstruction.