4 resultados para Computer Controlled Signals.
em AMS Tesi di Dottorato - Alm@DL - Università di Bologna
Resumo:
This thesis aimed at addressing some of the issues that, at the state of the art, avoid the P300-based brain computer interface (BCI) systems to move from research laboratories to end users’ home. An innovative asynchronous classifier has been defined and validated. It relies on the introduction of a set of thresholds in the classifier, and such thresholds have been assessed considering the distributions of score values relating to target, non-target stimuli and epochs of voluntary no-control. With the asynchronous classifier, a P300-based BCI system can adapt its speed to the current state of the user and can automatically suspend the control when the user diverts his attention from the stimulation interface. Since EEG signals are non-stationary and show inherent variability, in order to make long-term use of BCI possible, it is important to track changes in ongoing EEG activity and to adapt BCI model parameters accordingly. To this aim, the asynchronous classifier has been subsequently improved by introducing a self-calibration algorithm for the continuous and unsupervised recalibration of the subjective control parameters. Finally an index for the online monitoring of the EEG quality has been defined and validated in order to detect potential problems and system failures. This thesis ends with the description of a translational work involving end users (people with amyotrophic lateral sclerosis-ALS). Focusing on the concepts of the user centered design approach, the phases relating to the design, the development and the validation of an innovative assistive device have been described. The proposed assistive technology (AT) has been specifically designed to meet the needs of people with ALS during the different phases of the disease (i.e. the degree of motor abilities impairment). Indeed, the AT can be accessed with several input devices either conventional (mouse, touchscreen) or alterative (switches, headtracker) up to a P300-based BCI.
Resumo:
The monitoring of cognitive functions aims at gaining information about the current cognitive state of the user by decoding brain signals. In recent years, this approach allowed to acquire valuable information about the cognitive aspects regarding the interaction of humans with external world. From this consideration, researchers started to consider passive application of brain–computer interface (BCI) in order to provide a novel input modality for technical systems solely based on brain activity. The objective of this thesis is to demonstrate how the passive Brain Computer Interfaces (BCIs) applications can be used to assess the mental states of the users, in order to improve the human machine interaction. Two main studies has been proposed. The first one allows to investigate whatever the Event Related Potentials (ERPs) morphological variations can be used to predict the users’ mental states (e.g. attentional resources, mental workload) during different reactive BCI tasks (e.g. P300-based BCIs), and if these information can predict the subjects’ performance in performing the tasks. In the second study, a passive BCI system able to online estimate the mental workload of the user by relying on the combination of the EEG and the ECG biosignals has been proposed. The latter study has been performed by simulating an operative scenario, in which the occurrence of errors or lack of performance could have significant consequences. The results showed that the proposed system is able to estimate online the mental workload of the subjects discriminating three different difficulty level of the tasks ensuring a high reliability.
Resumo:
Neural representations (NR) have emerged in the last few years as a powerful tool to represent signals from several domains, such as images, 3D shapes, or audio. Indeed, deep neural networks have been shown capable of approximating continuous functions that describe a given signal with theoretical infinite resolution. This finding allows obtaining representations whose memory footprint is fixed and decoupled from the resolution at which the underlying signal can be sampled, something that is not possible with traditional discrete representations, e.g., grids of pixels for images or voxels for 3D shapes. During the last two years, many techniques have been proposed to improve the capability of NR to approximate high-frequency details and to make the optimization procedures required to obtain NR less demanding both in terms of time and data requirements, motivating many researchers to deploy NR as the main form of data representation for complex pipelines. Following this line of research, we first show that NR can approximate precisely Unsigned Distance Functions, providing an effective way to represent garments that feature open 3D surfaces and unknown topology. Then, we present a pipeline to obtain in a few minutes a compact Neural Twin® for a given object, by exploiting the recent advances in modeling neural radiance fields. Furthermore, we move a step in the direction of adopting NR as a standalone representation, by considering the possibility of performing downstream tasks by processing directly the NR weights. We first show that deep neural networks can be compressed into compact latent codes. Then, we show how this technique can be exploited to perform deep learning on implicit neural representations (INR) of 3D shapes, by only looking at the weights of the networks.