5 resultados para Computationally efficient
em AMS Tesi di Dottorato - Alm@DL - Università di Bologna
Resumo:
Computer aided design of Monolithic Microwave Integrated Circuits (MMICs) depends critically on active device models that are accurate, computationally efficient, and easily extracted from measurements or device simulators. Empirical models of active electron devices, which are based on actual device measurements, do not provide a detailed description of the electron device physics. However they are numerically efficient and quite accurate. These characteristics make them very suitable for MMIC design in the framework of commercially available CAD tools. In the empirical model formulation it is very important to separate linear memory effects (parasitic effects) from the nonlinear effects (intrinsic effects). Thus an empirical active device model is generally described by an extrinsic linear part which accounts for the parasitic passive structures connecting the nonlinear intrinsic electron device to the external world. An important task circuit designers deal with is evaluating the ultimate potential of a device for specific applications. In fact once the technology has been selected, the designer would choose the best device for the particular application and the best device for the different blocks composing the overall MMIC. Thus in order to accurately reproducing the behaviour of different-in-size devices, good scalability properties of the model are necessarily required. Another important aspect of empirical modelling of electron devices is the mathematical (or equivalent circuit) description of the nonlinearities inherently associated with the intrinsic device. Once the model has been defined, the proper measurements for the characterization of the device are performed in order to identify the model. Hence, the correct measurement of the device nonlinear characteristics (in the device characterization phase) and their reconstruction (in the identification or even simulation phase) are two of the more important aspects of empirical modelling. This thesis presents an original contribution to nonlinear electron device empirical modelling treating the issues of model scalability and reconstruction of the device nonlinear characteristics. The scalability of an empirical model strictly depends on the scalability of the linear extrinsic parasitic network, which should possibly maintain the link between technological process parameters and the corresponding device electrical response. Since lumped parasitic networks, together with simple linear scaling rules, cannot provide accurate scalable models, either complicate technology-dependent scaling rules or computationally inefficient distributed models are available in literature. This thesis shows how the above mentioned problems can be avoided through the use of commercially available electromagnetic (EM) simulators. They enable the actual device geometry and material stratification, as well as losses in the dielectrics and electrodes, to be taken into account for any given device structure and size, providing an accurate description of the parasitic effects which occur in the device passive structure. It is shown how the electron device behaviour can be described as an equivalent two-port intrinsic nonlinear block connected to a linear distributed four-port passive parasitic network, which is identified by means of the EM simulation of the device layout, allowing for better frequency extrapolation and scalability properties than conventional empirical models. Concerning the issue of the reconstruction of the nonlinear electron device characteristics, a data approximation algorithm has been developed for the exploitation in the framework of empirical table look-up nonlinear models. Such an approach is based on the strong analogy between timedomain signal reconstruction from a set of samples and the continuous approximation of device nonlinear characteristics on the basis of a finite grid of measurements. According to this criterion, nonlinear empirical device modelling can be carried out by using, in the sampled voltage domain, typical methods of the time-domain sampling theory.
Resumo:
This dissertation concerns active fibre-reinforced composites with embedded shape memory alloy wires. The structural application of active materials allows to develop adaptive structures which actively respond to changes in the environment, such as morphing structures, self-healing structures and power harvesting devices. In particular, shape memory alloy actuators integrated within a composite actively control the structural shape or stiffness, thus influencing the composite static and dynamic properties. Envisaged applications include, among others, the prevention of thermal buckling of the outer skin of air vehicles, shape changes in panels for improved aerodynamic characteristics and the deployment of large space structures. The study and design of active composites is a complex and multidisciplinary topic, requiring in-depth understanding of both the coupled behaviour of active materials and the interaction between the different composite constituents. Both fibre-reinforced composites and shape memory alloys are extremely active research topics, whose modelling and experimental characterisation still present a number of open problems. Thus, while this dissertation focuses on active composites, some of the research results presented here can be usefully applied to traditional fibre-reinforced composites or other shape memory alloy applications. The dissertation is composed of four chapters. In the first chapter, active fibre-reinforced composites are introduced by giving an overview of the most common choices available for the reinforcement, matrix and production process, together with a brief introduction and classification of active materials. The second chapter presents a number of original contributions regarding the modelling of fibre-reinforced composites. Different two-dimensional laminate theories are derived from a parent three-dimensional theory, introducing a procedure for the a posteriori reconstruction of transverse stresses along the laminate thickness. Accurate through the thickness stresses are crucial for the composite modelling as they are responsible for some common failure mechanisms. A new finite element based on the First-order Shear Deformation Theory and a hybrid stress approach is proposed for the numerical solution of the two-dimensional laminate problem. The element is simple and computationally efficient. The transverse stresses through the laminate thickness are reconstructed starting from a general finite element solution. A two stages procedure is devised, based on Recovery by Compatibility in Patches and three-dimensional equilibrium. Finally, the determination of the elastic parameters of laminated structures via numerical-experimental Bayesian techniques is investigated. Two different estimators are analysed and compared, leading to the definition of an alternative procedure to improve convergence of the estimation process. The third chapter focuses on shape memory alloys, describing their properties and applications. A number of constitutive models proposed in the literature, both one-dimensional and three-dimensional, are critically discussed and compared, underlining their potential and limitations, which are mainly related to the definition of the phase diagram and the choice of internal variables. Some new experimental results on shape memory alloy material characterisation are also presented. These experimental observations display some features of the shape memory alloy behaviour which are generally not included in the current models, thus some ideas are proposed for the development of a new constitutive model. The fourth chapter, finally, focuses on active composite plates with embedded shape memory alloy wires. A number of di®erent approaches can be used to predict the behaviour of such structures, each model presenting different advantages and drawbacks related to complexity and versatility. A simple model able to describe both shape and stiffness control configurations within the same context is proposed and implemented. The model is then validated considering the shape control configuration, which is the most sensitive to model parameters. The experimental work is divided in two parts. In the first part, an active composite is built by gluing prestrained shape memory alloy wires on a carbon fibre laminate strip. This structure is relatively simple to build, however it is useful in order to experimentally demonstrate the feasibility of the concept proposed in the first part of the chapter. In the second part, the making of a fibre-reinforced composite with embedded shape memory alloy wires is investigated, considering different possible choices of materials and manufacturing processes. Although a number of technological issues still need to be faced, the experimental results allow to demonstrate the mechanism of shape control via embedded shape memory alloy wires, while showing a good agreement with the proposed model predictions.
Resumo:
Photovoltaic (PV) conversion is the direct production of electrical energy from sun without involving the emission of polluting substances. In order to be competitive with other energy sources, cost of the PV technology must be reduced ensuring adequate conversion efficiencies. These goals have motivated the interest of researchers in investigating advanced designs of crystalline silicon solar (c-Si) cells. Since lowering the cost of PV devices involves the reduction of the volume of semiconductor, an effective light trapping strategy aimed at increasing the photon absorption is required. Modeling of solar cells by electro-optical numerical simulation is helpful to predict the performance of future generations devices exhibiting advanced light-trapping schemes and to provide new and more specific guidelines to industry. The approaches to optical simulation commonly adopted for c-Si solar cells may lead to inaccurate results in case of thin film and nano-stuctured solar cells. On the other hand, rigorous solvers of Maxwell equations are really cpu- and memory-intensive. Recently, in optical simulation of solar cells, the RCWA method has gained relevance, providing a good trade-off between accuracy and computational resources requirement. This thesis is a contribution to the numerical simulation of advanced silicon solar cells by means of a state-of-the-art numerical 2-D/3-D device simulator, that has been successfully applied to the simulation of selective emitter and the rear point contact solar cells, for which the multi-dimensionality of the transport model is required in order to properly account for all physical competing mechanisms. In the second part of the thesis, the optical problems is discussed. Two novel and computationally efficient RCWA implementations for 2-D simulation domains as well as a third RCWA for 3-D structures based on an eigenvalues calculation approach have been presented. The proposed simulators have been validated in terms of accuracy, numerical convergence, computation time and correctness of results.
Resumo:
The aim of this thesis is the study of techniques for efficient management and use of the spectrum based on cognitive radio technology. The ability of cognitive radio technologies to adapt to the real-time conditions of its operating environment, offers the potential for more flexible use of the available spectrum. In this context, the international interest is particularly focused on the “white spaces” in the UHF band of digital terrestrial television. Spectrum sensing and geo-location database have been considered in order to obtain information on the electromagnetic environment. Different methodologies have been considered in order to investigate spectral resources potentially available for the white space devices in the TV band. The adopted methodologies are based on the geo-location database approach used either in autonomous operation or in combination with sensing techniques. A novel and computationally efficient methodology for the calculation of the maximum permitted white space device EIRP is then proposed. The methodology is suitable for implementation in TV white space databases. Different Italian scenarios are analyzed in order to identify both the available spectrum and the white space device emission limits. Finally two different applications of cognitive radio technology are considered. The first considered application is the emergency management. The attention is focused on the consideration of both cognitive and autonomic networking approaches when deploying an emergency management system. The cognitive technology is then considered in applications related to satellite systems. In particular a hybrid cognitive satellite-terrestrial is introduced and an analysis of coexistence between terrestrial and satellite networks by considering a cognitive approach is performed.
Resumo:
Changepoint analysis is a well established area of statistical research, but in the context of spatio-temporal point processes it is as yet relatively unexplored. Some substantial differences with regard to standard changepoint analysis have to be taken into account: firstly, at every time point the datum is an irregular pattern of points; secondly, in real situations issues of spatial dependence between points and temporal dependence within time segments raise. Our motivating example consists of data concerning the monitoring and recovery of radioactive particles from Sandside beach, North of Scotland; there have been two major changes in the equipment used to detect the particles, representing known potential changepoints in the number of retrieved particles. In addition, offshore particle retrieval campaigns are believed may reduce the particle intensity onshore with an unknown temporal lag; in this latter case, the problem concerns multiple unknown changepoints. We therefore propose a Bayesian approach for detecting multiple changepoints in the intensity function of a spatio-temporal point process, allowing for spatial and temporal dependence within segments. We use Log-Gaussian Cox Processes, a very flexible class of models suitable for environmental applications that can be implemented using integrated nested Laplace approximation (INLA), a computationally efficient alternative to Monte Carlo Markov Chain methods for approximating the posterior distribution of the parameters. Once the posterior curve is obtained, we propose a few methods for detecting significant change points. We present a simulation study, which consists in generating spatio-temporal point pattern series under several scenarios; the performance of the methods is assessed in terms of type I and II errors, detected changepoint locations and accuracy of the segment intensity estimates. We finally apply the above methods to the motivating dataset and find good and sensible results about the presence and quality of changes in the process.