2 resultados para Compression Metric
em AMS Tesi di Dottorato - Alm@DL - Università di Bologna
Resumo:
The evaluation of structural performance of existing concrete buildings, built according to standards and materials quite different to those available today, requires procedures and methods able to cover lack of data about mechanical material properties and reinforcement detailing. To this end detailed inspections and test on materials are required. As a consequence tests on drilled cores are required; on the other end, it is stated that non-destructive testing (NDT) cannot be used as the only mean to get structural information, but can be used in conjunction with destructive testing (DT) by a representative correlation between DT and NDT. The aim of this study is to verify the accuracy of some formulas of correlation available in literature between measured parameters, i.e. rebound index, ultrasonic pulse velocity and compressive strength (SonReb Method). To this end a relevant number of DT and NDT tests has been performed on many school buildings located in Cesena (Italy). The above relationships have been assessed on site correlating NDT results to strength of core drilled in adjacent locations. Nevertheless, concrete compressive strength assessed by means of NDT methods and evaluated with correlation formulas has the advantage of being able to be implemented and used for future applications in a much more simple way than other methods, even if its accuracy is strictly limited to the analysis of concretes having the same characteristics as those used for their calibration. This limitation warranted a search for a different evaluation method for the non-destructive parameters obtained on site. To this aim, the methodology of neural identification of compressive strength is presented. Artificial Neural Network (ANN) suitable for the specific analysis were chosen taking into account the development presented in the literature in this field. The networks were trained and tested in order to detect a more reliable strength identification methodology.
Resumo:
This work revolves around potential theory in metric spaces, focusing on applications of dyadic potential theory to general problems associated to functional analysis and harmonic analysis. In the first part of this work we consider the weighted dual dyadic Hardy's inequality over dyadic trees and we use the Bellman function method to characterize the weights for which the inequality holds, and find the optimal constant for which our statement holds. We also show that our Bellman function is the solution to a stochastic optimal control problem. In the second part of this work we consider the problem of quasi-additivity formulas for the Riesz capacity in metric spaces and we prove formulas of quasi-additivity in the setting of the tree boundaries and in the setting of Ahlfors-regular spaces. We also consider a proper Harmonic extension to one additional variable of Riesz potentials of functions on a compact Ahlfors-regular space and we use our quasi-additivity formula to prove a result of tangential convergence of the harmonic extension of the Riesz potential up to an exceptional set of null measure